Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation

Quarterly Journal of the Royal Meteorological Society Royal Meteorological Society 145:718 (2018) 147-163

Authors:

Kristian Strommen, Tim Palmer

Abstract:

Studies conducted by the UK Met Office reported significant skill in predicting the winter North Atlantic Oscillation (NAO) index with their seasonal prediction system. At the same time, a very low signal‐to‐noise ratio was observed, as measured using the “ratio of predictable components” (RPC) metric. We analyse both the skill and signal‐to‐noise ratio using a new statistical toy model, which assumes NAO predictability is driven by regime dynamics. It is shown that if the system is approximately bimodal in nature, with the model consistently underestimating the level of regime persistence each season, then both the high skill and high RPC value of the Met Office hindcasts can easily be reproduced. Underestimation of regime persistence could be attributable to any number of sources of model error, including imperfect regime structure or errors in the propagation of teleconnections. In particular, a high RPC value for a seasonal mean prediction may be expected even if the model's internal level of noise is realistic.

On the dynamical mechanisms governing El Niño-Southern Oscillation irregularity

Journal of Climate American Meteorological Society 31:20 (2018) 8401-8419

Authors:

J Berner, PD Sardeshmukh, Hannah Christensen

Abstract:

This study investigates the mechanisms by which short-timescale perturbations to atmospheric processes can affect El Niño-Southern Oscillation (ENSO) in climate models. To this end a control simulation of NCAR’s Community Climate System Model is compared to a simulation in which the model’s atmospheric diabatic tendencies are perturbed every time step using a Stochastically Perturbed Parameterized Tendencies (SPPT) scheme. The SPPT simulation compares better with ECMWF’s 20th-century reanalysis in having lower inter-annual sea surface temperature (SST) variability and more irregular transitions between El Niño and La Niña states, as expressed by a broader, less peaked spectrum. Reduced-order linear inverse models (LIMs) derived from the 1-month lag covariances of selected tropical variables yield good representations of tropical interannual variability in the two simulations. In particular, the basic features of ENSO are captured by the LIM’s least-damped oscillatory eigenmode. SPPT reduces the damping timescale of this eigenmode from 17 to 11 months, which is in better agreement with the 8 months obtained from reanalyses. This noise-induced stabilization is consistent with perturbations to the frequency of the ENSO eigenmode and explains the broadening of the SST spectrum (that is, the greater ENSO irregularity). Although the improvement in ENSO shown here was achieved through stochastic physics parameterizations, it is possible that similar improvements could be realized through changes in deterministic parameterizations or higher numerical resolution. It is suggested LIMs could provide useful insight into model sensitivities, uncertainties, and biases also in those cases.

Forcing single column models using high-resolution model simulations

Journal of Advances in Modeling Earth Systems Wiley 10:8 (2018) 1833-1857

Authors:

Hannah M Christensen, A Dawson, CE Holloway

Abstract:

To use single column models (SCMs) as a research tool for parametrisation development and process studies, the SCM must be supplied with realistic initial profiles, forcing fields and boundary conditions. We propose a new technique for deriving these required profiles, motivated by the increase in number and scale of high-resolution convection-permitting simulations. We suggest that these high-resolution simulations be coarse-grained to the required resolution of an SCM, and thereby be used as a proxy for the ‘true’ atmosphere. This paper describes the implementation of such a technique. We test the proposed methodology using high-resolution data from the UK Met Office’s Unified Model (MetUM), with a resolution of 4 km, covering a large tropical domain. This data is coarse grained and used to drive the European Centre for Medium-Range Weather Forecast’s (ECMWF) Integrated Forecasting System (IFS) SCM. The proposed method is evaluated by deriving IFS SCM forcing profiles from a consistent T639 IFS simulation. The SCM simulations track the global model, indicating a consistency between the estimated forcing fields and the ‘true’ dynamical forcing in the global model. We demonstrate the benefits of selecting SCM forcing profiles from across a large-domain, namely robust statistics, and the ability to test the SCM over a range of boundary conditions. We also compare driving the SCM with the coarse-grained dataset to driving it using the ECMWF operational analysis. We conclude by highlighting the importance of understanding biases in the high-resolution dataset, and suggest that our approach be used in combination with observationally derived forcing datasets.

The benefits of global high-resolution for climate simulation: process-understanding and the enabling of stakeholder decisions at the regional scale.

Bulletin of the American Meteorological Society (2018)

Authors:

MJ Roberts, PL Vidale, C Senior, HT Hewitt, C Bates, S Berthou, P Chang, HM Christensen, S Danilov, M-E Demory, SM Griffies, R Haarsma, T Jung, G Martin, S Minobe, T Ringler, M Satoh, R Schiemann, E Scoccimarro, G Stephens, MF Wehner

The impact of stochastic parametrisations on the representation of the Asian summer monsoon

CLIMATE DYNAMICS 50:5-6 (2018) 2269-2282

Authors:

K Strommen, HM Christensen, J Berner, TN Palmer