Impact of stochastic physics and model resolution on the simulation of tropical cyclones in climate GCMs

Journal of Climate American Meteorological Society 34:11 (2021) 4315-4341

Authors:

Pl Vidale, K Hodges, B Vanniere, P Davini, M Roberts, Kristian Strommen, A Weisheimer, E Plesca, S Corti

Abstract:

The role of model resolution in simulating geophysical vortices with the characteristics of realistic Tropical Cyclones (TCs) is well established. The push for increasing resolution continues, with General Circulation Models (GCMs) starting to use sub-10km grid spacing. In the same context it has been suggested that the use of Stochastic Physics (SP) may act as a surrogate for high resolution, providing some of the benefits at a fraction of the cost. Either technique can reduce model uncertainty, and enhance reliability, by providing a more dynamic environment for initial synoptic disturbances to be spawned and to grow into TCs. We present results from a systematic comparison of the role of model resolution and SP in the simulation of TCs, using EC-Earth simulations from project Climate-SPHINX, in large ensemble mode, spanning five different resolutions. All tropical cyclonic systems, including TCs, were tracked explicitly. As in previous studies, the number of simulated TCs increases with the use of higher resolution, but SP further enhances TC frequencies by ≈ 30%, in a strikingly similar way. The use of SP is beneficial for removing systematic climate biases, albeit not consistently so for interannual variability; conversely, the use of SP improves the simulation of the seasonal cycle of TC frequency. An investigation of the mechanisms behind this response indicates that SP generates both higher TC (and TC seed) genesis rates, and more suitable environmental conditions, enabling a more efficient transition of TC seeds into TCs. These results were confirmed by the use of equivalent simulations with the HadGEM3-GC31 GCM.

OpenEnsemble 1.0: a boon for the research community

Geoscientific Model Development Discussions Copernicus Publications (2020)

Continuous structural parameterization: a proposed method for representing different model parameterizations within one structure demonstrated for atmospheric convection

Journal of Advances in Modeling Earth Systems American Geophysical Union 12:8 (2020) e2020MS002085

Authors:

Fh Lambert, Pg Challenor, Neil Lewis, Dj McNeall, N Owen, Ia Boutle, Hm Christensen, Rj Keane, Nj Mayne, A Stirling, Mj Webb

Abstract:

Continuous structural parameterization (CSP) is a proposed method for approximating different numerical model parameterizations of the same process as functions of the same grid‐scale variables. This allows systematic comparison of parameterizations with each other and observations or resolved simulations of the same process. Using the example of two convection schemes running in the Met Office Unified Model (UM), we show that a CSP is able to capture concisely the broad behavior of the two schemes, and differences between the parameterizations and resolved convection simulated by a high resolution simulation. When the original convection schemes are replaced with their CSP emulators within the UM, basic features of the original model climate and some features of climate change are reproduced, demonstrating that CSP can capture much of the important behavior of the schemes. Our results open the possibility that future work will estimate uncertainty in model projections of climate change from estimates of uncertainty in simulation of the relevant physical processes.

Jet speed variability obscures Euro‐Atlantic regime structure

Geophysical Research Letters American Geophysical Union 47:15 (2020) e2020GL087907

Authors:

J Dorrington, Kj Strommen

Abstract:

Euro‐Atlantic regimes are typically identified using either the latitude of the North Atlantic jet or clustering algorithms in the phase space of 500‐hPa geopotential (Z500). However, while robust trimodality is visibly apparent in jet latitude indices, Z500 clusters require highly sensitive significance tests to distinguish them from autocorrelated noise. This leads to considerable decadal variability in regime patterns, confounding many potential applications. A clear‐cut choice of the optimal number of regimes is also hard to justify. We argue that the jet speed, a near‐Gaussian distribution projecting strongly onto the Z500 field, is the source of these difficulties. Once its influence is removed, the phase space becomes visibly non‐Gaussian, and clustering algorithms easily recover three regimes, closely corresponding to the jet latitude modes. Further analysis supports the existence of two additional blocking regimes, corresponding to a tilted and split jet. All five regimes are approximately stationary across the twentieth century.

The value of initialisation on decadal timescales: state dependent predictability in the CESM Decadal Prediction Large Ensemble

Journal of Climate American Meteorological Society 33:17 (2020) 7353-7370

Authors:

Hannah Christensen, Judith Berner, Stephen Yeager

Abstract:

Information in decadal climate prediction arises from a well initialised ocean state and from the predicted response to an external forcing. The length of time over which the initial conditions benefit the decadal forecast depends on the start date of the forecast. We characterise this state-dependent predictability for decadal forecasts of upper ocean heat content in the Community Earth System Model. We find regionally dependent initial condition predictability, with extended predictability generally observed in the extra-tropics. We also detect state-dependent predictability, with the year of loss of information from the initialisation varying between start dates. The decadal forecasts in the North Atlantic show substantial information from the initial conditions beyond the ten-year forecast window, and a high degree of state-dependent predictability. We find some evidence for state dependent predictability in the ensemble spread in this region, similar to that seen in weather and subseasonal-to-seasonal forecasts. For some start dates, an increase of information with lead time is observed, for which the initialised forecasts predict a growing phase of the Atlantic Multidecadal Oscillation. Finally we consider the information in the forecast from the initial conditions relative to the forced response, and quantify the crossover timescale after which the forcing provides more information. We demonstrate that the climate change signal projects onto different patterns than the signal from the initial conditions. This means that even after the crossover timescale has been reached in a basin-averaged sense, the benefits of initialisation can be felt locally on longer timescales.