On unveiling buried nuclei with JWST: A technique for hunting the most obscured galaxy nuclei from local to high redshift
Astronomy & Astrophysics EDP Sciences 696 (2025) ARTN A135
Abstract:
We analyze JWST NIRSpec+MIRI/MRS observations of the infrared (IR) polycyclic aromatic hydrocarbon (PAH) features in the central regions (a at 6 μm; a 440 pc depending on the source) of local luminous IR galaxies. In this work, we examine the effect of nuclear obscuration on the PAH features of deeply obscured nuclei, predominantly found in local luminous IR galaxies, and we compare these nuclei with astar-forming regions. We extend previous work to include shorter wavelength PAH ratios now available with the NIRSpec+MIRI/MRS spectral range. We introduce a new diagnostic diagram for selecting deeply obscured nuclei based on the 3.3 and 6.2 μm PAH features and/or mid-IR continuum ratios at a3 and 5 μm. We find that the PAH equivalent width ratio of the brightest PAH features at shorter wavelengths (at 3.3 and 6.2 μm) is impacted by nuclear obscuration. Although the sample of luminous IR galaxies used in this analysis is relatively small, we find that sources exhibiting a high silicate absorption feature cluster tightly in a specific region of the diagram, whereas star-forming regions experiencing lower extinction levels occupy a different area in the diagram. This demonstrates the potential of this technique to identify buried nuclei. To leverage the excellent sensitivity of the MIRI imager on board JWST, we extend our method of identifying deeply obscured nuclei at higher redshifts using a selection of MIRI filters. Specifically, the combination of various MIRI JWST filters enables the identification of buried sources beyond the local Universe and up to za 3, where other commonly used obscuration tracers such as the 9.7 μm silicate band, are out of the spectral range of MRS. Our results pave the way for identifying distant deeply obscured nuclei with JWST.On the consistency of rotation curves and spatially integrated H i flux profiles
Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2110-2120
Abstract:
Resolved rotation curves (RCs) are the gold-standard measurements for inferring dark matter distributions in Lambda cold dark matter and testing alternative theories of dynamics in galaxies. However, they are expensive to obtain, making them prohibitive for large galaxy samples and at higher redshift. Spatially integrated flux profiles are more accessible and present the information in a different form, but – except in a highly compressed form, as linewidths – have not so far been compared in detail with RCs or employed for dynamical inferences. Here, we study the consistency of RCs and surface density profiles from SPARC with spatially integrated flux profiles from ALFALFA, by combining the resolved properties in a forward model for the flux profile. We define a new metric for asymmetry in the flux profiles, enabling us to cleanly identify those unsuitable for our axisymmetric method. Among all SPARC galaxies the agreement between RCs and flux profiles is satisfactory within the limitations of the data – with most galaxies having an uncertainty-normalized mean squared error (MSE) below 10 – whilst no galaxy deemed symmetric has a MSE above 1.2. Most cases of good agreement prefer an gas dispersion of 13 km s, consistent with resolved studies of gas dispersion from the literature. These results open the door for spatially integrated flux profiles to be used as proxies for spatially resolved dynamics, including a robust appraisal of the degree of asymmetry.Euclid preparation
Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A85
Abstract:
Measurements of galaxy clustering are affected by redshift-space distortions (RSDs). Peculiar velocities, gravitational lensing, and other light-cone projection effects modify the observed redshifts, fluxes, and sky positions of distant light sources. We determined which of these effects leave a detectable imprint on several two-point clustering statistics to be extracted from the Euclid wide spectroscopic survey (EWSS) on large scales. We generated 140 mock galaxy catalogues with the survey geometry and selection function of the EWSS and made use of the LIGER (LIght cones with GEneral Relativity) method to account for a variable number of relativistic RSDs to linear order in the cosmological perturbations. We estimated different two-point clustering statistics from the mocks and used the likelihood-ratio test to calculate the statistical significance with which the EWSS could reject the null hypothesis that certain relativistic projection effects can be neglected in the theoretical models. We find that the combined effects of lensing magnification and convergence imprint characteristic signatures on several clustering observables. Their signal-to-noise ratio (S/N) ranges between 2.5 and 6 (depending on the adopted summary statistic) for the highest-redshift galaxies in the EWSS. The corresponding feature due to the peculiar velocity of the Sun is measured with a S/N of order one or two. The multipoles of the power spectrum from the catalogues that include all relativistic effects reject the null hypothesis that RSDs are only generated by the variation in the peculiar velocity along the line of sight with a significance of 2.9 standard deviations. As a by-product of our study, we demonstrate that the mixing-matrix formalism to model finite-volume effects in the multipole moments of the power spectrum can be robustly applied to surveys made of several disconnected patches. Our results indicate that relativistic RSDs, in particular the contribution from weak gravitational lensing, cannot be disregarded when modelling two-point clustering statistics extracted from the EWSS.The kinematic contribution to the cosmic number count dipole
ArXiv 2503.0247 (2025)
The Simons Observatory: Quantifying the impact of beam chromaticity on large-scale B-mode science
(2025)