Euclid preparation

Astronomy & Astrophysics EDP Sciences 695 (2025) a229

Authors:

L Zalesky, CJR McPartland, JR Weaver, S Toft, DB Sanders, B Mobasher, N Suzuki, I Szapudi, I Valdes, G Murphree, N Chartab, N Allen, S Taamoli, SWJ Barrow, O Chávez Ortiz, SL Finkelstein, S Gwyn, M Sawicki, HJ McCracken, D Stern, H Dannerbauer, B Altieri, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, S Casas, FJ Castander, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, CJ Conselice, L Conversi, Y Copin, L Corcione, F Courbin, HM Courtois, A Da Silva, H Degaudenzi, G De Lucia, AM Di Giorgio, J Dinis, F Dubath, CAJ Duncan, X Dupac, S Dusini, M Farina, S Farrens, S Ferriol, S Fotopoulou, M Frailis, E Franceschi, S Galeotta, B Garilli, W Gillard, B Gillis, C Giocoli, P Gómez-Alvarez, A Grazian, F Grupp, SVH Haugan, H Hoekstra, W Holmes, I Hook, F Hormuth, A Hornstrup, P Hudelot, K Jahnke, B Joachimi, E Keihänen, S Kermiche, A Kiessling, M Kilbinger, B Kubik, K Kuijken, M Kümmel, M Kunz, H Kurki-Suonio, R Laureijs, S Ligori, PB Lilje, V Lindholm, I Lloro, G Mainetti, D Maino, E Maiorano, O Mansutti, O Marggraf, K Markovic, M Martinelli, N Martinet, F Marulli, R Massey, S Maurogordato, S Mei, Y Mellier, M Meneghetti, E Merlin, G Meylan, M Moresco, L Moscardini, E Munari, C Neissner, S-M Niemi, JW Nightingale, C Padilla, S Paltani, F Pasian, K Pedersen, WJ Percival, V Pettorino, S Pires, G Polenta, M Poncet, LA Popa, L Pozzetti, F Raison, R Rebolo, A Renzi, J Rhodes, G Riccio, E Romelli, M Roncarelli, E Rossetti, R Saglia, Z Sakr, D Sapone, R Scaramella, M Schirmer, P Schneider, T Schrabback, A Secroun, E Sefusatti, G Seidel, S Serrano, C Sirignano, G Sirri, L Stanco, J Steinwagner, P Tallada-Crespí, HI Teplitz, I Tereno, R Toledo-Moreo, F Torradeflot, I Tutusaus, EA Valentijn, L Valenziano, T Vassallo, G Verdoes Kleijn, A Veropalumbo, Y Wang, J Weller, G Zamorani, E Zucca, M Bolzonella, A Boucaud, E Bozzo, C Burigana, D Di Ferdinando, JA Escartin Vigo, R Farinelli, J Gracia-Carpio, N Mauri, AA Nucita, V Scottez, M Tenti, M Viel, M Wiesmann, Y Akrami, V Allevato, S Anselmi, M Ballardini, M Bethermin, A Blanchard, L Blot, S Borgani, S Bruton, R Cabanac, A Calabro, A Cappi, CS Carvalho, T Castro, KC Chambers, R Chary, S Contarini, T Contini, AR Cooray, B De, G Desprez, A Díaz-Sánchez, S Di Domizio, H Dole, S Escoffier, AG Ferrari, I Ferrero, F Finelli, F Fornari, L Gabarra, K Ganga, J García-Bellido, E Gaztanaga, F Giacomini, G Gozaliasl, A Hall, WG Hartley, H Hildebrandt, J Hjorth, M Huertas-Company, O Ilbert, A Jimenez Muñoz, JJE Kajava, V Kansal, D Karagiannis, CC Kirkpatrick, L Legrand, G Libet, A Loureiro, J Macias-Perez, G Maggio, M Magliocchetti, C Mancini, F Mannucci, R Maoli, CJAP Martins, S Matthew, L Maurin, RB Metcalf, P Monaco, C Moretti, G Morgante, Nicholas A Walton, J Odier, L Patrizii, A Pezzotta, M Pöntinen, V Popa, C Porciani, D Potter, P Reimberg, I Risso, P-F Rocci, M Sahlén, C Scarlata, A Schneider, M Sereno, A Silvestri, P Simon, A Spurio Mancini, SA Stanford, C Tao, G Testera, R Teyssier, S Tosi, A Troja, M Tucci, C Valieri, J Valiviita, D Vergani, G Verza, IA Zinchenko

Finding radio transients with anomaly detection and active learning based on volunteer classifications

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 538:3 (2025) staf336

Authors:

Alex Andersson, Chris Lintott, Rob Fender, Michelle Lochner, Patrick Woudt, Jakob van den Eijnden, Alexander van der Horst, Assaf Horesh, Payaswini Saikia, Gregory R Sivakoff, Lilia Tremou, Mattia Vaccari

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>In this work, we explore the applicability of unsupervised machine learning algorithms to finding radio transients. Facilities such as the Square Kilometre Array (SKA) will provide huge volumes of data in which to detect rare transients; the challenge for astronomers is how to find them. We demonstrate the effectiveness of anomaly detection algorithms using 1.3 GHz light curves from the SKA precursor MeerKAT. We make use of three sets of descriptive parameters (‘feature sets’) as applied to two anomaly detection techniques in the astronomaly package and analyse our performance by comparison with citizen science labels on the same data set. Using transients found by volunteers as our ground truth, we demonstrate that anomaly detection techniques can recall over half of the radio transients in the 10 per cent of the data with the highest anomaly scores. We find that the choice of anomaly detection algorithm makes a minor difference, but that feature set choice is crucial, especially when considering available resources for human inspection and/or follow-up. Active learning, where human labels are given for just 2 per cent of the data, improves recall by up to 20 percentage points, depending on the combination of features and model used. The best-performing results produce a factor of 5 times fewer sources requiring vetting by experts. This is the first effort to apply anomaly detection techniques to finding radio transients and shows great promise for application to other data sets, and as a real-time transient detection system for upcoming large surveys.</jats:p>

Robust cosmic shear with small-scale nulling

(2025)

Authors:

Giulia Piccirilli, Matteo Zennaro, Carlos García-García, David Alonso

Euclid preparation

Astronomy & Astrophysics EDP Sciences 694 (2025) ARTN A141

Authors:

N Tessore, B Joachimi, A Loureiro, A Hall, G Cañas-Herrera, I Tutusaus, N Jeffrey, K Naidoo, Jd McEwen, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, F Bernardeau, D Bonino, E Branchini, M Brescia, J Brinchmann, A Caillat, S Camera, V Capobianco, C Carbone, Vf Cardone, J Carretero, S Casas, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, M Cropper, A Da Silva, H Degaudenzi, G De Lucia, J Dinis, F Dubath, Caj Duncan, X Dupac, S Dusini, M Farina, S Farrens, F Faustini

Abstract:

In this paper we present the framework for measuring angular power spectra in the Euclid mission. The observables in galaxy surveys, such as galaxy clustering and cosmic shear, are not continuous fields, but discrete sets of data, obtained only at the positions of galaxies. We show how to compute the angular power spectra of such discrete data sets, without treating observations as maps of an underlying continuous field that is overlaid with a noise component. This formalism allows us to compute the exact theoretical expectations for our measured spectra, under a number of assumptions that we track explicitly. In particular, we obtain exact expressions for the additive biases ('shot noise') in angular galaxy clustering and cosmic shear. For efficient practical computations, we introduce a spin-weighted spherical convolution with a well-defined convolution theorem, which allows us to apply exact theoretical predictions to finite-resolution maps, including HEALPix. When validating our methodology, we find that our measurements are biased by less than 1% of their statistical uncertainty in simulations of Euclid's first data release.

Matching current observational constraints with nonminimally coupled dark energy

Physical Review D American Physical Society (APS) 111:4 (2025) ARTN L041303

Authors:

William J Wolf, Pedro G Ferreira, Carlos García-García

Abstract:

We show that a Universe with a nonminimally coupled scalar field can fit current measurements of the expansion rate of the Universe better than the standard Λ-cold dark matter model or other minimally coupled dark energy models. In particular, the nonminimal coupling in this model allows for the dark energy model to exhibit stable phantom crossing behavior, which seems to be suggested by the constraints on the dark energy equation of state coming from the most recent data. While we find a clear improvement in the goodness of fit for this dark energy model with respect to others that have been considered in the recent literature, using information theoretic criteria, we show that the evidence for it is still inconclusive.