The Cosmology of a Universe with Spontaneously-Broken Lorentz Symmetry

ArXiv astro-ph/0610125 (2006)

Authors:

PG Ferreira, BM Gripaios, R Saffari, TG Zlosnik

Abstract:

A self consistent effective field theory of modified gravity has recently been proposed with spontaneous breaking of local Lorentz invariance. The symmetry is broken by a vector field with the wrong-sign mass term and it has been shown to have additional graviton modes and modified dispersion relations. In this paper we study the evolution of a homogeneous and isotropic universe in the presence of such a vector field with a minimum lying along the time-like direction. A plethora of different regimes is identified, such as accelerated expansion, loitering, collapse and tracking.

The evolution of host mass and black hole mass in QSOs from the 2dF QSO Redshift Survey

ArXiv astro-ph/0609270 (2006)

Authors:

S Fine, SM Croom, L Miller, A Babic, D Moore, B Brewer, RG Sharp, BJ Boyle, T Shanks, RJ Smith, PJ Outram, NS Loaring

Abstract:

We investigate the relation between the mass of super-massive black holes (Mbh) in QSOs and the mass of the dark matter halos hosting them (Mdh). We measure the widths of broad emission lines (Mgii lambda 2798, Civ lambda 1549) from QSO composite spectra as a function of redshift. These widths are then used to determine virial black hole mass estimates. We compare our virial black hole mass estimates to dark matter halo masses for QSO hosts derived by Croom et al. (2005) based on measurements of QSO clustering. This enables us to trace the Mbh-Mdh relation over the redshift range z=0.5 to 2.5. We calculate the mean zero-point of the Mbh-Mdh relation to be Mbh=10^(8.4+/-0.2)Msun for an Mdh=10^(12.5)Msun. These data are then compared with several models connecting Mbh and Mdh as well as recent hydrodynamical simulations of galaxy evolution. We note that the flux limited nature of QSO samples can cause a Malmquist-type bias in the measured zero-point of the Mbh-Mdh relation. The magnitude of this bias depends on the scatter in the Mbh-Mdh relation, and we reevaluate the zero-point assuming three published values for this scatter. (abridged)

Massive elliptical galaxies: From cores to halos

Astrophysical Journal 648:2 I (2006) 826-834

Authors:

CJ Lintott, I Ferreras, O Lahav

Abstract:

In the context of recent observational results that show massive ellipticals were in place at high redshifts, we reassess the status of monolithic collapse in a ACDM universe. Using a sample of over 2000 galaxies from the Sloan Digital Sky Survey, by comparing the dynamical mass and stellar mass (estimated from colors) we find that ellipticals have "cores" that are baryon-dominated within their half-light radius. These galaxies correspond to 3 σ peaks in the spherical collapse model if the total mass in the halo is assumed to be 20 times the dynamical mass within the half-light radius. This value yields stellar mass-to-total mass ratios of 8%, compared to a cosmological baryon fraction of 18% derived from the first 3 years of WMAP observations alone. We further develop a method for reconstructing the concentration halo parameter c of the progenitors of these galaxies by utilizing adiabatic contraction. Although the analysis is done within the framework of monolithic collapse, the resulting distribution of c is lognormal with a peak value of c ∼ 3-10 and a distribution width similar to the results of N-body simulations. We also derive scaling relations between stellar and dynamical mass and the velocity dispersion, and find that these are sufficient to recover the tilt of the fundamental plane. © 2006. The American Astronomical Society. All rights reserved.

The birth of molecular clouds:formation of atomic precursors in colliding flows

Astrophysical Journal 648 (2006) 1052-1065

Authors:

AD Slyz, Fabian Heitsch, Julien Devriendt, Lee Hartmann

MAXIMA: A balloon-borne cosmic microwave background anisotropy experiment

Review of Scientific Instruments 77:7 (2006)

Authors:

B Rabii, CD Winant, JS Collins, AT Lee, PL Richards, ME Abroe, S Hanany, BR Johnson, P Ade, A Balbi, JJ Bock, J Borrill, R Stompor, A Boscaleri, E Pascale, P De Bernardis, PG Ferreira, VV Hristov, AE Lange, AH Jaffe, CB Netterfield, GF Smoot, JHP Wu

Abstract:

We describe the Millimeter wave Anisotropy experiment IMaging Array (MAXIMA), a balloon-borne experiment which measured the temperature anisotropy of the cosmic microwave background (CMB) on angular scales of 10° to 5°. MAXIMA mapped the CMB using 16 bolometric detectors in spectral bands centered at 150, 240, and 410 GHz, with 10' resolution at all frequencies. The combined receiver sensitivity to CMB anisotropy was ∼40 /uK √s. The bolometric detectors, which were cooled to 100 mK, were a prototype of the detectors which will be used on the Planck Surveyor Satellite of the European Space Agency. Systematic parasitic contributions were controlled by using four uncorrelated spatial modulations, thorough cross-linking, multiple independent CMB observations, heavily baffled optics, and strong spectral discrimination. Pointing reconstruction was accurate to 1′, and absolute calibration was better than 4%. Two MAXIMA flights with more than 8.5 h of CMB observations have mapped a total of 300 deg 2 of the sky in regions of negligible known foreground emission. MAXIMA results have been released in previous publications and shown to be consistent with the Wilkinson Microwave Anisotropy Probe. MAXIMA I maps, power spectra, and correlation matrices are publicly available at http://cosmology.berkeley.edu/maxima. © 2006 American Institute of Physics.