KiDS+VIKING-450: Cosmic shear tomography with optical+infrared data

Astronomy and Astrophysics: a European journal EDP Sciences

Authors:

H Hildebrandt, F Köhlinger, JLVD Busch, B Joachimi, C Heymans, A Kannawadi, AH Wright, M Asgari, C Blake, H Hoekstra, S Joudaki, K Kuijken, LANCE Miller, CB Morrison, T Tröster, A Amon, M Archidiacono, S Brieden, A Choi, JTAD Jong, T Erben, B Giblin, JA Peacock, A Mead, M Radovich

Abstract:

We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey (VIKING). This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning $450~$deg$^2$, allows us to improve significantly the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and - most importantly - solidify our knowledge of the redshift distributions of the sources. Based on a flat $\Lambda$CDM model we find $S_8\equiv\sigma_8\sqrt{\Omega_{\rm m}/0.3}=0.737_{-0.036}^{+0.040}$ in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with $S_8$ differing by $2.3\sigma$. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The COSMOS-2015-calibrated KiDS redshift distributions are however discrepant with the results from our extensive spectroscopic calibration sample and the distributions recovered using angular clustering measurements, which we deem more reliable. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys.

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

Authors:

HARLEY Katz, S Martin-Alvarez, JULIEN Devriendt, A Slyz, T Kimm

Abstract:

Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various mechanisms have been proposed for their existence including primordial fields generated by inflation, or amplification and injection by compact astrophysical objects. Separating the potential impact of each magnetogenesis scenario on the magnitude and orientation of the magnetic field and their impact on gas dynamics may give insight into the physics that magnetised our Universe. In this work, we demonstrate that because the induction equation and solenoidal constraint are linear with $B$, the contribution from different sources of magnetic field can be separated in cosmological magnetohydrodynamics simulations and their evolution and influence on the gas dynamics can be tracked. We present a suite of simulations where the primordial field strength is varied to determine the contributions of the primordial and supernovae-injected magnetic fields to the total magnetic energy as a function of time and spatial location. We find that, for our specific model, the supernova-injected fields rarely penetrate far from haloes, despite often dominating the total magnetic energy in the simulations. The magnetic energy density from the supernova-injected field scales with density with a power-law slope steeper than 4/3 and often dominates the total magnetic energy inside of haloes. However, the star formation rates in our simulations are not affected by the presence of magnetic fields, for the ranges of primordial field strengths examined. These simulations represent a first demonstration of the magnetic field tracer algorithm which we suggest will be an important tool for future cosmological MHD simulations.

Magnetogenesis at Cosmic Dawn: Tracing the Origins of Cosmic Magnetic Fields

MNRAS

Authors:

Harley Katz, Sergio Martin-Alvarez, Julien Devriendt, Adrianne Slyz, Taysun Kimm

Abstract:

Despite their ubiquity, the origin of cosmic magnetic fields remains unknown. Various mechanisms have been proposed for their existence including primordial fields generated by inflation, or amplification and injection by compact astrophysical objects. Separating the potential impact of each magnetogenesis scenario on the magnitude and orientation of the magnetic field and their impact on gas dynamics may give insight into the physics that magnetised our Universe. In this work, we demonstrate that because the induction equation and solenoidal constraint are linear with $B$, the contribution from different sources of magnetic field can be separated in cosmological magnetohydrodynamics simulations and their evolution and influence on the gas dynamics can be tracked. Exploiting this property, we develop a magnetic field tracer algorithm for cosmological simulations that can track the origin and evolution of different components of the magnetic field. We present a suite of cosmological magnetohydrodynamical RAMSES simulations that employ this algorithm where the primordial field strength is varied to determine the contributions of the primordial and supernovae-injected magnetic fields to the total magnetic energy as a function of time and spatial location. We find that, for our specific model, the supernova-injected fields rarely penetrate far from haloes, despite often dominating the total magnetic energy in the simulations. The magnetic energy density from the supernova-injected field scales with density with a power-law slope steeper than 4/3 and often dominates the total magnetic energy inside of haloes. However, the star formation rates in our simulations are not affected by the presence of magnetic fields, for the ranges of primordial field strengths examined. These simulations represent a first demonstration of the magnetic field tracer algorithm (abridged).

Measuring the Hubble constant from the cooling of the CMB monopole

The Astrophysical Journal: an international review of astronomy and astronomical physics American Astronomical Society

Authors:

Maximilian H Abitbol, J Colin Hill, Jens Chluba

Abstract:

The cosmic microwave background (CMB) monopole temperature evolves with the inverse of the cosmological scale factor, independent of many cosmological assumptions. With sufficient sensitivity, real-time cosmological observations could thus be used to measure the local expansion rate of the Universe using the cooling of the CMB. We forecast how well a CMB spectrometer could determine the Hubble constant via this method. The primary challenge of such a mission lies in the separation of Galactic and extra-Galactic foreground signals from the CMB at extremely high precision. However, overcoming these obstacles could potentially provide an independent, highly robust method to shed light on the current low-/high-$z$ Hubble tension. We find that a 3\% measurement of the Hubble constant requires an effective sensitivity to the CMB monopole temperature of approximately $60~\mathrm{pK \sqrt{yr}}$ throughout a 10-year mission. This sensitivity would also enable high-precision measurements of the expected $\Lambda$CDM spectral distortions, but remains futuristic at this stage.

Method for automatically detecting objects of predefined size within an image

9/202,060

Abstract:

The digital representation of the image is sequentially subjected to the following steps: (i) applying the Fourier transform to the original image; (ii) defining a critical Fourier wavelength equal to the predefined size of the objects; (iii) applying one of the techniques of entropy maximization or cross-entropy minimization to the original image to create the new image wherein (a) the amplitudes and the phases of the Fourier components of the new image with wavelengths that are shorter than the critical Fourier wavelength are substantially the same as the amplitudes and the phases of the Fourier components of the original image, and wherein (b) for the amplitudes and the phases of Fourier components having wavelengths that are longer than the critical wavelength, new values are estimated so that either image cross-entropy is minimized or image entropy is maximized.