Modifying gravity with the Aether: an alternative to Dark Matter

ArXiv astro-ph/0607411 (2006)

Authors:

TG Zlosnik, PG Ferreira, GD Starkman

Abstract:

There is evidence that Newton and Einstein's theories of gravity cannot explain the dynamics of a universe made up solely of baryons and radiation. To be able to understand the properties of galaxies, clusters of galaxies and the universe on the whole it has become commonplace to invoke the presence of dark matter. An alternative approach is to modify the gravitational field equations to accommodate observations. We propose a new class of gravitational theories in which we add a new degree of freedom, the Aether, in the form of a vector field that is coupled covariantly, but non-minimally, with the space-time metric. We explore the Newtonian and non-Newtonian limits, discuss the conditions for these theories to be consistent and explore their effect on cosmology.

Bayesian Photometric Redshifts for Weak Lensing Applications

ArXiv astro-ph/0607302 (2006)

Authors:

Edward Edmondson, Lance Miller, Christian Wolf

Abstract:

The next generation of weak gravitational lensing surveys is capable of generating good measurements of cosmological parameters, provided that, amongst other requirements, adequate redshift information is available for the background galaxies that are measured. It is frequently assumed that photometric redshift techniques provide the means to achieve this. Here we compare Bayesian and frequentist approaches to photometric redshift estimation, particularly at faint magnitudes. We identify and discuss the biases that are inherent in the various methods, and describe an optimum Bayesian method for extracting redshift distributions from photometric data.

Probing unexplored territories with MUSE: a second generation instrument for the VLT

ArXiv astro-ph/0606329 (2006)

Authors:

R Bacon, S Bauer, P Boehm, D Boudon, S Brau-Nogue, P Caillier, L Capoani, CM Carollo, N Champavert, T Contini, E Daguise, D Dalle, B Delabre, J Devriendt, S Dreizler, J Dubois, M Dupieux, JP Dupin, E Emsellem, P Ferruit, M Franx, G Gallou, J Gerssen, B Guiderdoni, T Hahn, D Hofmann, A Jarno, A Kelz, C Koehler, W Kollatschny, J Kosmalski, F Laurent, SJ Lilly, J Lizon, M Loupias, S Lynn, A Manescau, RM McDermid, C Monstein, H Nicklas, L Pares, L Pasquini, A Pecontal-Rousset, E Pecontal, R Pello, C Petit, J-P Picat, E Popow, A Quirrenbach, R Reiss, E Renault, M Roth, J Schaye, G Soucail, M Steinmetz, S Stroebele, R Stuik, P Weilbacher, H Wozniak, PT de Zeeuw

Abstract:

The Multi Unit Spectroscopic Explorer (MUSE) is a second-generation VLT panoramic integral-field spectrograph under preliminary design study. MUSE has a field of 1x1 arcmin**2 sampled at 0.2x0.2 arcsec**2 and is assisted by the VLT ground layer adaptive optics ESO facility using four laser guide stars. The simultaneous spectral range is 465-930 nm, at a resolution of R~3000. MUSE couples the discovery potential of a large imaging device to the measuring capabilities of a high-quality spectrograph, while taking advantage of the increased spatial resolution provided by adaptive optics. This makes MUSE a unique and tremendously powerful instrument for discovering and characterizing objects that lie beyond the reach of even the deepest imaging surveys. MUSE has also a high spatial resolution mode with 7.5x7.5 arcsec**2 field of view sampled at 25 milli-arcsec. In this mode MUSE should be able to obtain diffraction limited data-cubes in the 600-930 nm wavelength range. Although the MUSE design has been optimized for the study of galaxy formation and evolution, it has a wide range of possible applications; e.g. monitoring of outer planets atmosphere, environment of young stellar objects, super massive black holes and active nuclei in nearby galaxies or massive spectroscopic surveys of stellar fields in the Milky Way and nearby galaxies.

Probing unexplored territories with MUSE: a second generation instrument for the VLT

(2006)

Authors:

R Bacon, S Bauer, P Boehm, D Boudon, S Brau-Nogue, P Caillier, L Capoani, CM Carollo, N Champavert, T Contini, E Daguise, D Dalle, B Delabre, J Devriendt, S Dreizler, J Dubois, M Dupieux, JP Dupin, E Emsellem, P Ferruit, M Franx, G Gallou, J Gerssen, B Guiderdoni, T Hahn, D Hofmann, A Jarno, A Kelz, C Koehler, W Kollatschny, J Kosmalski, F Laurent, SJ Lilly, J Lizon, M Loupias, S Lynn, A Manescau, RM McDermid, C Monstein, H Nicklas, L Pares, L Pasquini, A Pecontal-Rousset, E Pecontal, R Pello, C Petit, J-P Picat, E Popow, A Quirrenbach, R Reiss, E Renault, M Roth, J Schaye, G Soucail, M Steinmetz, S Stroebele, R Stuik, P Weilbacher, H Wozniak, PT de Zeeuw

The Vector-Tensor nature of Bekenstein's relativistic theory of Modified Gravity

ArXiv gr-qc/0606039 (2006)

Authors:

TG Zlosnik, PG Ferreira, Glenn D Starkman

Abstract:

Bekenstein's theory of relativistic gravity is conventionally written as a bi-metric theory. The two metrics are related by a disformal transformation defined by a dynamical vector field and a scalar field. In this comment we show that the theory can be re-written as Vector-Tensor theory akin to Einstein-Aether theories with non-canonical kinetic terms. We discuss some of the implications of this equivalence.