Dynamical differences between short and long blocks in the Northern Hemisphere

Journal of Geophysical Research: Atmospheres Wiley 126:10 (2021) e2020JD034082

Authors:

Marie Drouard, Tim Woollings, David MH Sexton, Carol F McSweeney

Abstract:

Blocking events are persistent weather systems that strongly impact daily weather and more importantly our societies. One reason behind their strong impact is their potential long duration, as blocking events can last from 5 days up to four-five weeks. However, the mechanisms explaining this difference of duration have not been properly studied yet. Here, we investigate the differences between short blocks, which last 5 days, and long blocks, which last at least 10 days. We take a broad hemispheric and annual approach to this question, while recognizing that other specific factors may play a role in particular region and seasons. We show that long blocks often involve cyclonic Rossby wave breaking, while short blocks are equally associated with cyclonic and anticyclonic wave breaking. This main result is reproduced in a coupled climate model ensemble. The lower number of long anticyclonic blocks might be due to three main reasons: One/the anticyclone is reinforced on the downstream side during anticyclonic blocks which is less conducive to persistence; two/positive synoptic eddy feedback tends to force the mean zonal wind toward a more northward position during anticyclonic blocks, whereas it forces the mean zonal wind to the south of the block during cyclonic blocks, which has been previously shown to be associated with more persistent weather patterns; three/particularly sustained eddy feedback is needed to maintain long anticyclonic blocks.

Evidence for disequilibrium chemistry from vertical mixing in hot Jupiter atmospheres: A comprehensive survey of transiting close-in gas giant exoplanets with warm-Spitzer/IRAC

ASTRONOMY & ASTROPHYSICS 648 (2021) ARTN A127

Authors:

Claire Baxter, Jean-Michel Desert, Shang-Min Tsai, Kamen O Todorov, Jacob L Bean, Drake Deming, Vivien Parmentier, Jonathan J Fortney, Michael Line, Daniel Thorngren, Raymond T Pierrehumbert, Adam Burrows, Adam P Showman

Origins of Multi-decadal Variability in Sudden Stratospheric Warmings

(2021)

Authors:

Oscar Dimdore-Miles, Lesley Gray, Scott Osprey

Abstract:

Abstract. Sudden Stratospheric Warmings (SSWs) are major disruptions of the Northern Hemisphere (NH) stratospheric polar vortex and occur on average approximately 6 times per decade in observation based records. However, within these records, intervals of significantly higher and lower SSW rates are observed suggesting the possibility of low frequency variations in event occurrence. A better understanding of factors that influence this decadal variability may help to improve predictability of NH mid-latitude surface climate, through stratosphere-troposphere coupling. In this work, multi-decadal variability of SSW events is examined in a 1000-yr pre-industrial simulation of a coupled Atmosphere-Ocean-Land-Sea ice model. Using a wavelet spectral decomposition method, we show that hiatus events (intervals of a decade or more with no SSWs) and consecutive SSW events (extended intervals with at least one SSW in each year) vary on multi-decadal timescales of period between 60 and 90 years. Signals on these timescales are present for approximately 450 years of the simulation. We investigate the possible source of these long-term signals and find that the direct impact of variability in tropical sea surface temperatures, as well as the associated Aleutian Low, can account for only a small portion of the SSW variability. Instead, the major influence on long-term SSW variability is associated with long-term variability in amplitude of the stratospheric quasi biennial oscillation (QBO). The QBO influence is consistent with the well known Holton-Tan relationship, with SSW hiatus intervals associated with extended periods of particularly strong, deep QBO westerly phases. The results support recent studies that have highlighted the role of vertical coherence in the QBO when considering coupling between the QBO, the polar vortex and tropospheric circulation.

A wavelet transform method to determine monsoon onset and retreat from precipitation time‐series

International Journal of Climatology Wiley 41:11 (2021) 5295-5317

Authors:

Jorge L García‐Franco, Scott Osprey, Lesley J Gray

Abstract:

A new method to determine monsoon onset and retreat timings using wavelet transform methodology applied to precipitation time‐series at the pentad scale is described. The principal advantage of this method is its portability, since it can be easily adapted for any region and dataset. The application of the method is illustrated for the North American Monsoon and the Indian Monsoon using four different precipitation datasets and climate model output. The method is shown to be robust across all the datasets and both monsoon regions. The mean onset and retreat dates agree well with previous methods. Spatial distributions of the precipitation and circulation anomalies identified around the onset and retreat dates are also consistent with previous work and illustrate that this method may be used at the grid‐box scale, not just over large area‐averaged regions. The method is also used to characterise the strength and timing of the Midsummer drought in southern Mexico and Central America. A two peak structure is found to be a robust structure in only in 33% of the years, with other years showing only one peak or no signs of a bimodal distribution. The two‐peak structure analysed at the grid‐box scale is shown to be a significant signal in several regions of Central America and southern Mexico. The methodology is also applied to climate model output from the Met Office Hadley Centre UKESM1 and HadGEM3 CMIP6 experiments. The modelled onset and retreat dates agree well with observations in the North American Monsoon but not in the Indian Monsoon. The start and end of the modelled Midsummer drought in southern Mexico and Central America is delayed by one pentad and has a stronger bimodal signal than observed.

Origins of multi-decadal variability in sudden stratospheric warmings

Weather and Climate Dynamics Copernicus Publications 2:1 (2021) 205-231

Authors:

Oscar Dimdore-Miles, Lesley Gray, Scott Osprey

Abstract:

Sudden stratospheric warmings (SSWs) are major disruptions of the Northern Hemisphere (NH) stratospheric polar vortex and occur on average approximately six times per decade in observation-based records. However, within these records, intervals of significantly higher and lower SSW rates are observed, suggesting the possibility of low-frequency variations in event occurrence. A better understanding of factors that influence this decadal variability may help to improve predictability of NH midlatitude surface climate, through stratosphere–troposphere coupling. In this work, multi-decadal variability of SSW events is examined in a 1000-year pre-industrial simulation of a coupled global climate model. Using a wavelet spectral decomposition method, we show that hiatus events (intervals of a decade or more with no SSWs) and consecutive SSW events (extended intervals with at least one SSW in each year) vary on multi-decadal timescales of periods between 60 and 90 years. Signals on these timescales are present for approximately 450 years of the simulation. We investigate the possible source of these long-term signals and find that the direct impact of variability in tropical sea surface temperatures, as well as the associated Aleutian Low, can account for only a small portion of the SSW variability. Instead, the major influence on long-term SSW variability is associated with long-term variability in amplitude of the stratospheric quasi-biennial oscillation (QBO). The QBO influence is consistent with the well-known Holton–Tan relationship, with SSW hiatus intervals associated with extended periods of particularly strong, deep QBO westerly phases. The results support recent studies that have highlighted the role of vertical coherence in the QBO when considering coupling between the QBO, the polar vortex and tropospheric circulation.