Wave-mean flow interactions in the atmospheric circulation of tidally locked planets
Astrophysical Journal IOP Publishing 869:1 (2018)
Abstract:
We use a linear shallow-water model to investigate the global circulation of the atmospheres of tidally locked planets. Simulations, observations, and simple models show that if these planets are sufficiently rapidly rotating, their atmospheres have an eastward equatorial jet and a hot-spot east of the substellar point. We linearize the shallow-water model about this eastward flow and its associated geostrophic height perturbation. The forced solutions of this system show that the shear flow explains the form of the global circulation, particularly the hot-spot shift and the positions of the cold standing waves on the night-side. We suggest that the eastward hot-spot shift in observations and 3D simulations of these atmospheres is caused by the zonal flow Doppler-shifting the stationary wave response eastwards, summed with the geostrophic height perturbation from the flow itself. This differs from other studies which explained the hot-spot shift as pure advection of heat from air flowing eastward from the substellar point, or as equatorial waves travelling eastwards. We compare our solutions to simulations in our climate model Exo-FMS and show that they matched the position of the eastward-shifted hot-spot, and the global wind pattern. We discuss how planetary properties affect the global circulation, and how they change observables such as the hot-spot shift or day-night contrast. We conclude that the wave-mean flow interaction be tween the stationary planetary waves and the equatorial jet is a vital part of the equilibrium circulation on tidally locked planets.Preindustrial Control Simulations With HadGEM3-GC3.1 for CMIP6
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 10:12 (2018) 3049-3075
Contrasting mechanisms of summer blocking over western Eurasia
Geophysical Research Letters Wiley 45:21 (2018) 12,040-12,048
Abstract:
The formation of summer blocking events appears to have been mostly studied for a few individual events often associated with heat waves. Here we investigate summer blocking event dynamics in three areas over western Eurasia in order to draw some more general conclusions, mostly in terms of high‐ and low‐frequency processes. A 2‐D blocking event detection algorithm is applied to the 500‐hPa‐geopotential field from the ERA‐40 and ERA‐Interim reanalyses over the 1958–2017 period. It is shown that both high‐ and low‐frequency processes are important to initiate blocking events over southern central Europe. Blocking events over western Russia are preceded by a significant low‐frequency large‐scale wave train, and their formation and maintenance are dominated by low‐frequency processes only. Finally, it is shown that the risk of extreme seasons such as summer 2010 cannot be accurately estimated from the Poisson statistics of past events.Global or local pure-condensible atmospheres: Importance of horizontal latent heat transport
Astrophysical Journal Institute of Physics Publishing, Inc 867:54 (2018)
Ensemble sensitivity analysis of Greenland blocking in medium‐range forecasts
Quarterly Journal of the Royal Meteorological Society Wiley 144:716 (2018) 2358-2379