Circulation and cloud responses to patterned SST warming

(2024)

Authors:

Anna Mackie, Michael Byrne, Emily Van de Koot, Andrew IL Williams

Drivers of the ECMWF SEAS5 seasonal forecast for the hot and dry European summer of 2022

Quarterly Journal of the Royal Meteorological Society Wiley (2024)

Authors:

Matthew Patterson, Daniel J Befort, Christopher H O'Reilly, Antje Weisheimer

Abstract:

The European summer (June–August) 2022 was characterised by warm and dry anomalies across much of the continent, likely influenced by a northward‐shifted jet stream. These general features were well predicted by European Centre for Medium‐Range Weather Forecasts' system 5 seasonal forecast, initialised on May 1. Such successful predictions for European summers are relatively uncommon, particularly for atmospheric circulation. In this study, a set of hindcast experiments is employed to investigate the role that initialisation of the ocean, atmosphere, and land surface played in the 2022 forecast. We find that the trend from external forcing was the strongest contributor to the forecast near‐surface temperature anomalies, with atmospheric circulation and land‐surface interactions playing a secondary role. On the other hand, atmospheric circulation made a strong contribution to precipitation anomalies. Modelled Euro‐Atlantic circulation anomalies in 2022 were consistent with a La Niña‐forced teleconnection from the tropical Pacific. However, a northward jet trend in the model hindcasts with increasing greenhouse gas concentrations also contributed to the predicted circulation anomalies in 2022. In contrast, the observed linear trend in the jet over the past four decades was a southward shift, though it is unclear whether this trend was driven by external forcings or natural variability. Nevertheless, this case study demonstrates that important features of at least some European summers are predictable at the seasonal time‐scale.

Supplementary material to "Solar cycle impacts on North Atlantic climate"

(2024)

Authors:

Paula LM Gonzalez, Lesley J Gray, Stergios Misios, Scott Osprey, Hedi Ma

Intraseasonal shift in the wintertime North Atlantic jet structure projected by CMIP6 models

Copernicus Publications (2024)

Authors:

Marina Garcia-Burgos, Blanca Ayarzagüena, David Barriopedro, Tim Woollings, Ricardo Garcia-Herrera

Skilful probabilistic medium‐range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system

Meteorological Applications Wiley 31:4 (2024) e2222

Authors:

Lucy Main, Sarah Sparrow, Antje Weisheimer, Matthew Wright

Abstract:

Dengue fever is a source of substantial health burden in Vietnam. Given the well‐established influence of temperature and precipitation on vector biology and disease transmission, predictions of meteorological variables, such as those issued by ECMWF as a world‐leading provider of global ensemble forecasts, are likely to be valuable model inputs to a future dengue early warning system. In the absence of established verification at municipal and regional scales, this study assesses the skill of rainy season (May–October) ensemble precipitation and 2‐m temperature retrospective forecasts over North and South Vietnam initialized for dates during the period 2001–2020, evaluated against the ERA5 reanalysis for the same period. Forecasts are found to be significantly skilful compared with both climatology and persistence for lead times up to 10 days, including for cumulative precipitation values considered against independent rain gauge data. Rank histograms demonstrate that ensembles generally avoid excessive bias and consistently positive CRPSS values indicate substantial skill for temperature and cumulative precipitation forecasts for all spatial scales considered, despite differences in rainy season characteristics between North and South Vietnam. This forecast reliability demonstrates that meteorological input data based on ECMWF ensemble forecasts would add appreciably more value to the development of a future dengue early warning system compared to reference forecasts like climatology or persistence. These results raise hope for further exploration of predictive skill for relevant meteorological variables, particularly focused on their downscaling to produce district‐level epidemiological forecasts for urban areas where dengue is most prevalent.