Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales

Atmospheric Chemistry and Physics European Geosciences Union 22:7 (2022) 4867-4893

Authors:

Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, Bablu Sinha

Abstract:

Variations in the strength of the Northern Hemisphere winter polar stratospheric vortex can influence surface variability in the Atlantic sector. Disruptions of the vortex, known as sudden stratospheric warmings (SSWs), are associated with an equatorward shift and deceleration of the North Atlantic jet stream, negative phases of the North Atlantic Oscillation, and cold snaps over Eurasia and North America. Despite clear influences at the surface on sub-seasonal timescales, how stratospheric vortex variability interacts with ocean circulation on decadal to multi-decadal timescales is less well understood. In this study, we use a 1000 year preindustrial control simulation of the UK Earth System Model to study such interactions, using a wavelet analysis technique to examine non-stationary periodic signals in the vortex and ocean. We find that intervals which exhibit persistent anomalous vortex behaviour lead to oscillatory responses in the Atlantic Meridional Overturning Circulation (AMOC). The origin of these responses appears to be highly non-stationary, with spectral power in vortex variability at periods of 30 and 50 years. In contrast, AMOC variations on longer timescales (near 90-year periods) are found to lead to a vortex response through a pathway involving the equatorial Pacific and quasi-biennial oscillation. Using the relationship between persistent vortex behaviour and the AMOC response established in the model, we use regression analysis to estimate the potential contribution of the 8-year SSW hiatus interval in the 1990s to the recent negative trend in AMOC observations. The result suggests that approximately 30 % of the trend may have been caused by the SSW hiatus.

A stratospheric prognostic ozone for seamless Earth System Models: performance, impacts and future

Atmospheric Chemistry and Physics European Geosciences Union 22:7 (2022) 4277-4302

Authors:

Beatriz Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley Gray, Robin Hogan, Luke Jones, Linus Magnusson, Inna Politchtchouk, Theodore Shepherd, Nils Wedi, Antje Weisheimer

Abstract:

We have implemented a new stratospheric ozone model in the European Centre for Medium-Range Weather Forecasts (ECMWF) system and tested its performance for different timescales to assess the impact of stratospheric ozone on meteorological fields. We have used the new ozone model to provide prognostic ozone in medium-range and long-range (seasonal) experiments, showing the feasibility of this ozone scheme for a seamless numerical weather prediction (NWP) modelling approach. We find that the stratospheric ozone distribution provided by the new scheme in ECMWF forecast experiments is in very good agreement with observations, even for unusual meteorological conditions such as Arctic stratospheric sudden warmings (SSWs) and Antarctic polar vortex events like the vortex split of year 2002. To assess the impact it has on meteorological variables, we have performed experiments in which the prognostic ozone is interactive with radiation. The new scheme provides a realistic ozone field able to improve the description of the stratosphere in the ECMWF system, as we find clear reductions of biases in the stratospheric forecast temperature. The seasonality of the Southern Hemisphere polar vortex is also significantly improved when using the new ozone model. In medium-range simulations we also find improvements in high-latitude tropospheric winds during the SSW event considered in this study. In long-range simulations, the use of the new ozone model leads to an increase in the correlation of the winter North Atlantic Oscillation (NAO) index with respect to ERA-Interim and an increase in the signal-to-noise ratio over the North Atlantic sector. In our study we show that by improving the description of the stratospheric ozone in the ECMWF system, the stratosphere–troposphere coupling improves. This highlights the potential benefits of this new ozone model to exploit stratospheric sources of predictability and improve weather predictions over Europe on a range of timescales.

Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review

Weather and Climate Dynamics European Geosciences Union 3:1 (2022) 305-336

Authors:

Lisa-Ann Kautz, Olivia Martius Martius, Stephan Pfahl, Tim Woollings

Abstract:

The physical understanding and timely prediction of extreme weather events are of enormous importance to society due to their associated impacts. In this article, we highlight several types of weather extremes occurring in Europe in connection with a particular atmospheric flow pattern, known as atmospheric blocking. This flow pattern effectively blocks the prevailing westerly large-scale atmospheric flow, resulting in changing flow anomalies in the vicinity of the blocking system and persistent conditions in the immediate region of its occurrence. Blocking systems are long-lasting, quasi-stationary and self-sustaining systems that occur frequently over certain regions. Their presence and characteristics have an impact on the predictability of weather extremes and can thus be used as potential indicators. The phasing between the surface and the upper-level blocking anomalies is of major importance for the development of the extreme event. In summer, heat waves and droughts form below the blocking anticyclone primarily via large-scale subsidence that leads to cloud-free skies and, thus, persistent shortwave radiative warming of the ground. In winter, cold waves that occur during atmospheric blocking are normally observed downstream or south of these systems. Here, meridional advection of cold air masses from higher latitudes plays a decisive role. Depending on their location, blocking systems also may lead to a shift in the storm track, which influences the occurrence of wind and precipitation anomalies. Due to these multifaceted linkages, compound events are often observed in conjunction with blocking conditions. In addition to the aforementioned relations, the predictability of extreme events associated with blocking and links to climate change are assessed. Finally, current knowledge gaps and pertinent research perspectives for the future are discussed.

The global reach of gravity waves at the stratospheric speed limit from the 2022 Hunga Tonga volcanic eruption

Copernicus Publications (2022)

Authors:

Neil Hindley, Lars Hoffmann, M Joan Alexander, Cathryn Mitchell, Scott Osprey, Cora Randall, Corwin Wright, Jia Yue

The CAIRT Earth Explorer 11 mission: A way towards global GW momentum budgets

Copernicus Publications (2022)

Authors:

Peter Preusse, Scott Osprey, Inna Polichtchouk, Joern Ungermann, Martyn Chipperfield, Quentin Errera, Felix Friedl-Vallon, Bernd Funke, Sophie Godin-Beekmann, Alex Hoffmann, Alizee Malavart, Piera Raspollini, Bjoern-Martin Sinnhuber, Pekka Verronen, Kaley Walker