3D Cloud reconstruction through geospatially-aware Masked Autoencoders

Workshop paper at “Machine Learning and the Physical Sciences”, NeurIPS (2024)

Authors:

Stella Girtsou, Emiliano Diaz Salas-Porras, Lilli J Freischem, Joppe Massant, Kyriaki-Margarita Bintsi, Guiseppe Castiglione, William Jones, Michael Eisinger, Emmanuel Johnson, Anna Jungbluth

Abstract:

Clouds play a key role in Earth's radiation balance with complex effects that introduce large uncertainties into climate models. Real-time 3D cloud data is essential for improving climate predictions. This study leverages geostationary imagery from MSG/SEVIRI and radar reflectivity measurements of cloud profiles from CloudSat/CPR to reconstruct 3D cloud structures. We first apply self-supervised learning (SSL) methods-Masked Autoencoders (MAE) and geospatially-aware SatMAE on unlabelled MSG images, and then fine-tune our models on matched image-profile pairs. Our approach outperforms state-of-the-art methods like U-Nets, and our geospatial encoding further improves prediction results, demonstrating the potential of SSL for cloud reconstruction.

Weak liquid water path response in ship tracks

Atmospheric Chemistry and Physics (ACP) European Geosciences Union (2024)

Authors:

Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, Tristan WP Smith

Glaciation of liquid clouds, snowfall and reduced cloud cover at industrial aerosol hot spots

Science American Association for the Advancement of Science 386:6723 (2024) 756-762

Authors:

Velle Toll, Jorma Rahu, Hannes Keernik, Heido Trofimov, Tanel Voormansik, Peter Manshausen, Emma Hung, Daniel Michelson, Matthew Christensen, Piia Post, Heikki Junninen, Benjamin J Murray, Ulrike Lohmann, Duncan Watson-Parris, Philip Stier, Norman Donaldson, Trude Storelvmo, Markku Kulmala, Nicolas Bellouin

Abstract:

The ability of anthropogenic aerosols to freeze supercooled cloud droplets remains debated. In this work, we present observational evidence for the glaciation of supercooled liquid-water clouds at industrial aerosol hot spots at temperatures between −10° and −24°C. Compared with the nearby liquid-water clouds, shortwave reflectance was reduced by 14% and longwave radiance was increased by 4% in the glaciation-affected regions. There was an 8% reduction in cloud cover and an 18% reduction in cloud optical thickness. Additionally, daily glaciation-induced snowfall accumulations reached 15 millimeters. Glaciation events downwind of industrial aerosol hot spots indicate that anthropogenic aerosols likely serve as ice-nucleating particles. However, rare glaciation events downwind of nuclear power plants indicate that factors other than aerosol emissions may also play a role in the observed glaciation events.

ICON-HAM-lite: simulating the Earth system with interactive aerosols at kilometer scales

Atmospheric Chemistry and Physics Preprints European Geosciences Union (2024)

Authors:

Philipp Weiss, Ross Herbert, Philip Stier

Abstract:

Aerosols strongly influence Earth's climate as they scatter and absorb radiation and serve as condensation nuclei for cloud droplets and ice particles. New Earth system models that run at kilometer resolutions allow us to examine long-standing questions related to these interactions. To perform kilometer-scale simulations with the Earth system model ICON-MPIM, we developed the one-moment aerosol module HAM-lite. HAM-lite was derived from the two-moment module HAM. Like in HAM, aerosols are represented as an ensemble of log-normal modes. Unlike in HAM, aerosol sizes and compositions are prescribed, which reduces the computational costs significantly. Here, we present a first global simulation with four aerosol modes at a resolution of five kilometers and over a period of one year. The simulation captured key aerosol processes including, for example, the emission of dust aerosols by convective storms in the Sahara and the interactions between sea salt aerosols and tropical cyclones in the Pacific.

Multifractal Analysis for Evaluating the Representation of Clouds in Global Kilometre-Scale Models

Geophysical Research Letters American Geophysical Union (2024)

Authors:

Lilli Freischem, Philipp Weiss, HANNAH CHRISTENSEN, Philip STIER