Directed assembly of layered perovskite heterostructures as single crystals

Nature Springer Nature 597:7876 (2021) 355-359

Authors:

Michael L Aubrey, Abraham Saldivar Valdes, Marina R Filip, Bridget A Connor, Kurt P Lindquist, Jeffrey B Neaton, Hemamala I Karunadasa

Abstract:

The precise stacking of different two-dimensional (2D) structures such as graphene and MoS2 has reinvigorated the field of 2D materials, revealing exotic phenomena at their interfaces1,2. These unique interfaces are typically constructed using mechanical or deposition-based methods to build a heterostructure one monolayer at a time2,3. By contrast, self-assembly is a scalable technique, where complex materials can selectively form in solution4,5,6. Here we show a synthetic strategy for the self-assembly of layered perovskite–non-perovskite heterostructures into large single crystals in aqueous solution. Using bifunctional organic molecules as directing groups, we have isolated six layered heterostructures that form as an interleaving of perovskite slabs with a different inorganic lattice, previously unknown to crystallize with perovskites. In many cases, these intergrown lattices are 2D congeners of canonical inorganic structure types. To our knowledge, these compounds are the first layered perovskite heterostructures formed using organic templates and characterized by single-crystal X-ray diffraction. Notably, this interleaving of inorganic structures can markedly transform the band structure. Optical data and first principles calculations show that substantive coupling between perovskite and intergrowth layers leads to new electronic transitions distributed across both sublattices. Given the technological promise of halide perovskites4, this intuitive synthetic route sets a foundation for the directed synthesis of richly structured complex semiconductors that self-assemble in water.

Phonon Screening of Excitons in Semiconductors: Halide Perovskites and Beyond.

Physical review letters American Physical Society (APS) 127:6 (2021) 67401

Authors:

Marina R Filip, Jonah B Haber, Jeffrey B Neaton

Abstract:

The ab initio Bethe-Salpeter equation (BSE) approach, an established method for the study of excitons in materials, is typically solved in a limit where only static screening from electrons is captured. Here, we generalize this framework to include dynamical screening from phonons at lowest order in the electron-phonon interaction. We apply this generalized BSE approach to a series of inorganic lead halide perovskites, CsPbX_{3}, with X=Cl, Br, and I. We find that inclusion of screening from phonons significantly reduces the computed exciton binding energies of these systems. By deriving a simple expression for phonon screening effects, we reveal general trends for their importance in semiconductors and insulators, based on a hydrogenic exciton model. We demonstrate that the magnitude of the phonon screening correction in isotropic materials can be reliably predicted using four material specific parameters: the reduced effective mass, static and optical dielectric constants, and frequency of the most strongly coupled longitudinal-optical phonon mode. This framework helps to elucidate the importance of phonon screening and its relation to excitonic properties in a broad class of semiconductors.

Hot electron cooling in InSb probed by ultrafast time-resolved terahertz cyclotron resonance

Physical Review B American Physical Society 103 (2021) 245205

Authors:

Chelsea Xia, Jessica Louise Boland, Laura Herz, Marina Filip, Michael Johnston

Abstract:

Measuring terahertz (THz) conductivity on an ultrafast time scale is an excellent way to observe charge-carrier dynamics in semiconductors as a function of time after photoexcitation. However, a conductivity measurement alone cannot separate the effects of charge-carrier recombination from effective mass changes as charges cool and experience different regions of the electronic band structure. Here we present a form of time-resolved magneto-THz spectroscopy which allows us to measure cyclotron effective mass on a picosecond time scale. We demonstrate this technique by observing electron cooling in the technologically-significant narrow-bandgap semiconductor indium antimonide (InSb). A significant reduction of electron effective mass from 0.032 me to 0.017 me is observed in the first 200 ps after injecting hot electrons. Measurement of electron effective mass in InSb as a function of photo-injected electron density agrees well with conduction band non-parabolicity predictions from ab initio calculations of the quasiparticle band structure.

The geometric blueprint of perovskites

Proceedings of the National Academy of Sciences National Academy of Sciences 115:21 (2018) 5397-5402

Authors:

Marina R Filip, Feliciano Giustino

Abstract:

Perovskite minerals form an essential component of the Earth’s mantle, and synthetic crystals are ubiquitous in electronics, photonics, and energy technology. The extraordinary chemical diversity of these crystals raises the question of how many and which perovskites are yet to be discovered. Here we show that the “no-rattling” principle postulated by Goldschmidt in 1926, describing the geometric conditions under which a perovskite can form, is much more effective than previously thought and allows us to predict perovskites with a fidelity of 80%. By supplementing this principle with inferential statistics and internet data mining we establish that currently known perovskites are only the tip of the iceberg, and we enumerate 90,000 hitherto-unknown compounds awaiting to be studied. Our results suggest that geometric blueprints may enable the systematic screening of millions of compounds and offer untapped opportunities in structure prediction and materials design.

Chemically-localized resonant excitons in silver-pnictogen halide double perovskites

Journal of Physical Chemistry Letters American Chemical Society 12:8 (2021) 2057-2063

Authors:

Raisa-Ioana Biega, Marina Filip, Linn Leppert, Jeff Neaton

Abstract:

Halide double perovskites with alternating silver and pnictogen cations are an emerging family of photoabsorber materials with robust stability and band gaps in the visible range. However, the nature of optical excitations in these systems is not yet well understood, limiting their utility. Here, we use ab initio many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation approach to calculate the electronic structure and optical excitations of the double perovskite series Cs2AgBX6, with B=Bi3+, Sb3+, X = Br−, Cl−. We find that these materials exhibit strongly localized resonant excitons with energies from 170 to 434 meV below the direct band gap. In contrast to lead-based perovskites, the Cs2AgBX6 excitons are computed to be non-hydrogenic, with anisotropic effective masses and sensitive to local field effects, a consequence of their chemical heterogeneity. Our calculations demonstrate the limitations of the Wannier-Mott and Elliott models for this class of double perovskites and contribute to a detailed atomistic understanding of their light-matter interactions.