Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals.

Nature communications 9:1 (2018) 3311

Authors:

Jianbo Yin, Zhenjun Tan, Hao Hong, Jinxiong Wu, Hongtao Yuan, Yujing Liu, Cheng Chen, Congwei Tan, Fengrui Yao, Tianran Li, Yulin Chen, Zhongfan Liu, Kaihui Liu, Hailin Peng

Abstract:

Infrared light detection and sensing is deeply embedded in modern technology and human society and its development has always been benefitting from the discovery of various photoelectric materials. The rise of two-dimensional materials, thanks to their distinct electronic structures, extreme dimensional confinement and strong light-matter interactions, provides a material platform for next-generation infrared photodetection. Ideal infrared detectors should have fast respond, high sensitivity and air-stability, which are rare to meet at the same time in one two-dimensional material. Herein we demonstrate an infrared photodetector based on two-dimensional Bi2O2Se crystal, whose main characteristics are outstanding in the whole two-dimensional family: high sensitivity of 65 AW-1 at 1200 nm and ultrafast photoresponse of ~1 ps at room temperature, implying an intrinsic material-limited bandwidth up to 500 GHz. Such great performance is attributed to the suitable electronic bandgap and high carrier mobility of two-dimensional oxyselenide.

Folded superstructure and degeneracy-enhanced band gap in the weak-coupling charge density wave system 2H−TaSe2

Physical Review B American Physical Society 97 (2018)

Authors:

Yiwei Li, J Jiang, HF Yang, Dharmalingam Prabhakaran, ZK Liu, LX Yang, Yulin Chen

Abstract:

Using high-resolution angle-resolved photoemission spectroscopy (ARPES), we have mapped out the reconstructed electronic structure in the commensurate charge-density-wave (CDW) state of quasi-two-dimensional transition metal dichalcogenide 2H-TaSe2. The observation of the fine structure near Brillouin zone (BZ) center supplements the picture of Fermi surface folding in the 3×3 CDW state. In addition to the anisotropic CDW band gaps that energetically stabilize the system at the Fermi level in the first-order lock-in transition, we found band reconstruction at high binding energy, which can be well explained by the hybridization between main bands (MBs) and folded bands (FBs). Furthermore, in contrast to the perfectly nested quasi-one-dimensional system, triple-nesting-vector-induced CDW FBs increase the degeneracy of the band crossing and thus further enlarge the magnitude of band gap at certain momentum-energy positions. The visualization and modeling of CDW gaps in momentum-energy space reconciles the long-lasting controversy on the gap magnitude and suggests a weak-coupling Peierls physics in this system.

Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

APL Materials AIP Publishing 6:3 (2018) 036107

Authors:

HF Yang, C Chen, H Wang, ZK Liu, T Zhang, H Peng, NBM Schröter, SA Ekahana, J Jiang, LX Yang, V Kandyba, A Barinov, CY Chen, J Avila, MC Asensio, HL Peng, ZF Liu, YL Chen

Author Correction: How to probe the spin contribution to momentum relaxation in topological insulators.

Nature communications (2018)

Authors:

Moon-Sun Nam, BH Williams, Y Chen, S Contera, S Yao, M Lu, Y-F Chen, GA Timco, CA Muryn, Arzhang Ardavan

Abstract:

The original version of this Article contained an error in the spelling of the author Benjamin H. Williams, which was incorrectly given as Benjamin H. Willams. This has now been corrected in both the PDF and HTML versions of the Article.

Observation of topological surface states and strong electron/hole imbalance in extreme magnetoresistance compound LaBi

Physical Review Materials American Physical Society (APS) 2:2 (2018) 024201

Authors:

J Jiang, NBM Schröter, S-C Wu, N Kumar, C Shekhar, H Peng, X Xu, C Chen, HF Yang, C-C Hwang, S-K Mo, C Felser, BH Yan, ZK Liu, LX Yang, YL Chen