Magnetic Weyl semimetal phase in a Kagomé crystal

Science American Association for the Advancement of Science 365:6459 (2019) 1282-1285

Authors:

DF Liu, AJ Liang, EK Liu, QN Xu, Yiwei Li, C Chen, D Pei, WJ Shi, SK Mo, P Dudin, T Kim, C Cacho, G Li, Y Sun, LX Yang, ZK Liu, SSP Parkin, C Felser, Yulin Chen

Abstract:

Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.

A low-temperature Kerr effect microscope for the simultaneous magneto-optic and magneto-transport study of magnetic topological insulators

Measurement Science and Technology IOP Publishing 30:12 (2019) 125201

Authors:

J Liu, A Singh, J Llandro, Liam Duffy, Stanton, Holmes, MJ Applegate, Phillips, Thorsten Hesjedal, CHW Barnes

Abstract:

Magneto-optical Kerr effect (MOKE) microscopy is a surface-sensitive probe of magnetisation with micron-sized lateral resolution. Here, we present a low-temperature, focused polar MOKE microscope for the simultaneous magnetooptical and magneto-transport measurements, which has a temperature range of 1.6-300 K and is equipped with a magnet capable of delivering a field of up to 9 T. In this microscope, all optical components are integrated in a free-standing probe, allowing for the straightforward incorporation into many non-optical cryostat systems. Two-dimensional magnetisation scans on patterned ferromagnetic [CoFeB/Pt]n films demonstrate a magnetisation sensitivity of 10 µrad (Kerr angle) and a spatial resolution of 2.2 µm. The combination of optical and electrical measurements provides complementary temperature-dependent information, as demonstrated by the study of magnetic topological insulator thin films with out-of-plane magnetic anisotropy. Using this complementary approach, we study the effects of a secondary phase in Cr and V co-doped Sb2Te3 thin films, which show a combination of weak antilocalization and anisotropic magnetoresistance effects above 70 K. Our results highlight the virtue of MOKE and electrical transport to optimise exotic topological magnetic materials, paving the way for energy-efficient spintronic devices.

Chiral topological semimetal with multifold band crossings and long Fermi arcs

Nature Physics Springer Nature 15:8 (2019) 759-765

Authors:

Niels BM Schröter, Ding Pei, Maia G Vergniory, Yan Sun, Kaustuv Manna, Fernando de Juan, Jonas A Krieger, Vicky Süss, Marcus Schmidt, Pavel Dudin, Barry Bradlyn, Timur K Kim, Thorsten Schmitt, Cephise Cacho, Claudia Felser, Vladimir N Strocov, Yulin Chen

Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs.

Nature communications 10:1 (2019) 3478

Authors:

HF Yang, LX Yang, ZK Liu, Y Sun, C Chen, H Peng, M Schmidt, D Prabhakaran, BA Bernevig, C Felser, BH Yan, YL Chen

Abstract:

Surface Fermi arcs (SFAs), the unique open Fermi-surfaces (FSs) discovered recently in topological Weyl semimetals (TWSs), are unlike closed FSs in conventional materials and can give rise to many exotic phenomena, such as anomalous SFA-mediated quantum oscillations, chiral magnetic effects, three-dimensional quantum Hall effect, non-local voltage generation and anomalous electromagnetic wave transmission. Here, by using in-situ surface decoration, we demonstrate successful manipulation of the shape, size and even the connections of SFAs in a model TWS, NbAs, and observe their evolution that leads to an unusual topological Lifshitz transition not caused by the change of the carrier concentration. The phase transition teleports the SFAs between different parts of the surface Brillouin zone. Despite the dramatic surface evolution, the existence of SFAs is robust and each SFA remains tied to a pair of Weyl points of opposite chirality, as dictated by the bulk topology.

Author Correction: Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals.

Nature communications 10:1 (2019) 3457

Authors:

Jianbo Yin, Zhenjun Tan, Hao Hong, Jinxiong Wu, Hongtao Yuan, Yujing Liu, Cheng Chen, Congwei Tan, Fengrui Yao, Tianran Li, Yulin Chen, Zhongfan Liu, Kaihui Liu, Hailin Peng

Abstract:

An amendment to this paper has been published and can be accessed via a link at the top of the paper.