Disassembling one-dimensional chains in molybdenum oxides
Chinese Physics B IOP Publishing 33:12 (2024) 127102
Giant Domain Wall Anomalous Hall Effect in a Layered Antiferromagnet EuAl2Si2
Physical Review Letters American Physical Society (APS) 133:21 (2024) 216602
Constructing the Fulde–Ferrell–Larkin–Ovchinnikov state in a CrOCl/NbSe2 van der Waals heterostructure
Nano Letters American Chemical Society 24:41 (2024) 12814-12822
Abstract:
Time reversal symmetry breaking in superconductors, resulting from external magnetic fields or spontaneous magnetization, often leads to unconventional superconducting properties. In this way, an intrinsic phenomenon called the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state may be realized by the Zeeman effect. Here, we construct the FFLO state in an artificial CrOCl/NbSe<sub>2</sub> van der Waals (vdW) heterostructure by utilizing the superconducting proximity effect of NbSe<sub>2</sub> flakes. The proximity-induced superconductivity demonstrates a considerably weak gap of about 0.12 meV, and the in-plane upper critical field reveals the behavior of the FFLO state. First-principles calculations uncover the origin of the proximitized superconductivity, which indicates the importance of Cr vacancies or line defects in CrOCl. Moreover, the FFLO state could be induced by the inherent large spin splitting in CrOCl. Our findings not only provide a practical scheme for constructing the FFLO state but also inspire the discovery of an exotic FFLO state in other two-dimensional vdW heterostructures.Quantum-confined tunable ferromagnetism on the surface of a Van der Waals antiferromagnet NaCrTe2
Nano Letters American Chemical Society 24:32 (2024) 9832-9838
Abstract:
The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe2, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and ab initio calculations. The measured band structure deviates from the calculation of bulk NaCrTe2 but agrees with that of ferromagnetic monolayer CrTe2. Consistently, we observe unexpected exchange splitting of the band dispersions, persisting well above the Néel temperature of bulk NaCrTe2. We argue that NaCrTe2 features a quantum-confined 2D ferromagnetic state in the topmost surface layer due to strong ferromagnetic correlation in the CrTe2 layer. Moreover, the exchange splitting and the critical temperature can be controlled by surface doping of alkali-metal atoms, suggesting the feasibility of tuning the surface ferromagnetism. Our work not only presents a simple platform for exploring tunable 2D ferromagnetism but also provides important insights into the quantum-confined low-dimensional magnetic states.Electronic correlation and pseudogap-like behavior of high-temperature superconductor La3Ni2O7
Chinese Physics Letters IOP Publishing 41:8 (2024) 087402