Proximity-effect-induced superconductivity in a van der Waals heterostructure consisting of a magnetic topological insulator and a conventional superconductor

Physical Review B American Physical Society (APS) 109:14 (2024) l140503

Authors:

Peng Dong, Xiaofei Hou, Jiadian He, Yiwen Zhang, Yifan Ding, Xiaohui Zeng, Jinghui Wang, Yueshen Wu, Kenji Watanabe, Takashi Taniguchi, Wei Xia, Yanfeng Guo, Yulin Chen, Xiang Zhou, Wei Li, Jun Li

Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals

Nature Materials Springer Nature 23:3 (2024) 331-338

Authors:

Zhu-Jun Wang, Xiao Kong, Yuan Huang, Jun Li, Lihong Bao, Kecheng Cao, Yuxiong Hu, Jun Cai, Lifen Wang, Hui Chen, Yueshen Wu, Yiwen Zhang, Fei Pang, Zhihai Cheng, Petr Babor, Miroslav Kolibal, Zhongkai Liu, Yulin Chen, Qiang Zhang, Yi Cui, Kaihui Liu, Haitao Yang, Xinhe Bao, Hong-Jun Gao, Zhi Liu, Wei Ji, Feng Ding, Marc-Georg Willinger

Distinct superconducting states in the pressure-induced metallic structures of topological heterostructure BiTe

Materials Today Physics Elsevier 42 (2024) 101377

Authors:

Shihao Zhu, Bangshuai Zhu, Cuiying Pei, Qi Wang, Jing Chen, Qinghua Zhang, Tianping Ying, Lin Gu, Yi Zhao, Changhua Li, Weizheng Cao, Mingxin Zhang, Lili Zhang, Jian Sun, Yulin Chen, Juefei Wu, Yanpeng Qi

Distinct superconducting states in the pressure-induced metallic structures of topological heterostructure BiTe

Materials Today Physics Elsevier 42 (2024) 101377

Abstract:

The (Bi2)m(Bi2Te3)n homologous series possess natural multilayer heterostructure with intriguing physical properties at ambient pressure. Herein, we report the pressure-dependent evolution of the structure and electrical transport of the dual topological insulator BiTe, a member of the (Bi2)m(Bi2Te3)n series. With applied pressure, BiTe exhibits several different crystal structures and distinct superconducting states, which is remarkably similar to other members of the (Bi2)m(Bi2Te3)n series. Our results provide a systematic phase diagram for the pressure-induced superconductivity in BiTe, contributing to the highly interesting physics in this (Bi2)m(Bi2Te3)n series.

Controlling charge density order in 2⁢𝐻−TaSe2 using a van Hove singularity

Physical Review Research American Physical Society 6 (2024) 013088

Authors:

Luckin, Dharmalingam Prabhakaran, Yulin Chen

Abstract:

We report on the interplay between a van Hove singularity and a charge density wave state in 2⁢𝐻−TaSe2. We use angle-resolved photoemission spectroscopy to investigate changes in the Fermi surface of this material under surface doping with potassium. At high doping, we observe modifications which imply the disappearance of the (3×3) charge density wave and formation of a different correlated state. Using a tight-binding-based approach as well as an effective model, we explain our observations as a consequence of coupling between the single-particle Lifshitz transition during which the Fermi level passes a van Hove singularity and the charge density order. In this scenario, the high electronic density of states associated with the van Hove singularity induces a change in the periodicity of the charge density wave from the known (3×3) to a new (2×2) superlattice.