Uranus and Neptune’s stratospheric water abundance and vertical profile from Herschel-HIFI

Planetary Science Journal IOP Publishing 3:4 (2022) 96

Authors:

Nicholas Teanby, Patrick Irwin, Melodie Sylvestre, Conor Nixon, Martin Cordiner

Abstract:

Here we present new constraints on Uranus’s and Neptune’s externally sourced stratospheric water abundance using disk-averaged observations of the 557 GHz emission line from Herschel’s Heterodyne Instrument for the Far-Infrared. Derived stratospheric column water abundances are × 1014 cm−2 for Uranus and ×1014 cm−2 for Neptune, consistent with previous determinations using ISO-SWS and Herschel-PACS. For Uranus, excellent observational fits are obtained by scaling photochemical model profiles or with step-type profiles with water vapor limited to ≤0.6 mbar. However, Uranus’s cold stratospheric temperatures imply a ∼0.03 mbar condensation level, which further limits water vapor to pressures ≤0.03 mbar. Neptune’s warmer stratosphere has a deeper ∼1 mbar condensation level, so emission-line pressure broadening can be used to further constrain the water profile. For Neptune, excellent fits are obtained using step-type profiles with cutoffs of ∼0.3–0.6 mbar or by scaling a photochemical model profile. Step-type profiles with cutoffs ≥1.0 mbar or ≤0.1 mbar can be rejected with 4σ significance. Rescaling photochemical model profiles from Moses & Poppe to match our observed column abundances implies similar external water fluxes for both planets: × 104 cm−2 s−1 for Uranus and ×104 cm−2 s−1 for Neptune. This suggests that Neptune’s ∼4 times greater observed water column abundance is primarily caused by its warmer stratosphere preventing loss by condensation, rather than by a significantly more intense external source. To reconcile these water fluxes with other stratospheric oxygen species (CO and CO2) requires either a significant CO component in interplanetary dust particles (Uranus) or contributions from cometary impacts (Uranus, Neptune)

Cloud-convection feedback in brown dwarf atmospheres

Astrophysical Journal American Astronomical Society 929:2 (2022) 153

Authors:

Maxence Lefevre, Xianyu Tan, Elspeth KH Lee, Rt Pierrehumbert

Abstract:

Numerous observational evidence has suggested the presence of active meteorology in the atmospheres of brown dwarfs. A near-infrared brightness variability has been observed. Clouds have a major role in shaping the thermal structure and spectral properties of these atmospheres. The mechanism of such variability is still unclear, and neither 1D nor global circulation models can fully study this topic due to resolution. In this study, a convective-resolving model is coupled to gray-band radiative transfer in order to study the coupling between the convective atmosphere and the variability of clouds over a large temperature range with a domain of several hundred kilometers. Six types of clouds are considered, with microphysics including settling. The clouds are radiatively active through the Rosseland mean coefficient. Radiative cloud feedback can drive spontaneous atmospheric variability in both temperature and cloud structure, as modeled for the first time in three dimensions. Silicate clouds have the most effect on the thermal structure with the generation of a secondary convective layer in some cases, depending on the assumed particle size. Iron and aluminum clouds also have a substantial impact on the atmosphere. Thermal spectra were computed, and we find the strongest effect of the clouds is the smoothing of spectral features at optical wavelengths. Compared to observed L and T dwarfs on the color–magnitude diagram, the simulated atmospheres are redder for most of the cases. Simulations with the presence of cloud holes are closer to observations.

Subseasonal Variation in Neptune’s Mid-infrared Emission

The Planetary Science Journal American Astronomical Society 3:4 (2022) 78-78

Authors:

Michael T Roman, Leigh N Fletcher, Glenn S Orton, Thomas K Greathouse, Julianne I Moses, Naomi Rowe-Gurney, Patrick GJ Irwin, Arrate Antuñano, James Sinclair, Yasumasa Kasaba, Takuya Fujiyoshi, Imke de Pater, Heidi B Hammel

Abstract:

<jats:title>Abstract</jats:title> <jats:p>We present an analysis of all currently available ground-based imaging of Neptune in the mid-infrared. Dating between 2003 and 2020, the images reveal changes in Neptune’s mid-infrared (∼8–25 <jats:italic>μ</jats:italic>m) emission over time in the years surrounding Neptune’s 2005 southern summer solstice. Images sensitive to stratospheric ethane (∼12 <jats:italic>μ</jats:italic>m), methane (∼8 <jats:italic>μ</jats:italic>m), and CH<jats:sub>3</jats:sub>D (∼9 <jats:italic>μ</jats:italic>m) display significant subseasonal temporal variation on regional and global scales. Comparison with H<jats:sub>2</jats:sub> S(1) hydrogen quadrupole (∼17.035 <jats:italic>μ</jats:italic>m) spectra suggests that these changes are primarily related to stratospheric temperature changes. The stratosphere appears to have cooled between 2003 and 2009 across multiple filtered wavelengths, followed by a dramatic warming of the south pole between 2018 and 2020. Conversely, upper-tropospheric temperatures—inferred from ∼17 to 25 <jats:italic>μ</jats:italic>m imaging—appear invariant during this period, except for the south pole, which appeared warmest between 2003 and 2006. We discuss the observed variability in the context of seasonal forcing, tropospheric meteorology, and the solar cycle. Collectively, these data provide the strongest evidence to date that processes produce subseasonal variation on both global and regional scales in Neptune’s stratosphere.</jats:p>

Impact of variable photospheric radius on exoplanet atmospheric retrievals

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 513:1 (2022) l20-l24

Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b

Nature Astronomy Springer Nature 6:4 (2022) 471-479

Authors:

Thomas Mikal-Evans, David K Sing, Joanna K Barstow, Tiffany Kataria, Jayesh Goyal, Nikole Lewis, Jake Taylor, Nathan J Mayne, Tansu Daylan, Hannah R Wakeford, Mark S Marley, Jessica J Spake