The Mantis Network
Astronomy & Astrophysics EDP Sciences 685 (2024) a139
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nature Astronomy Nature Research 8:7 (2024) 879-898
Abstract:
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models.The impact of Ozone on Earth-like exoplanet climate dynamics: the case of Proxima Centauri b
(2024)
Constraining the global composition of D/H and 18O/16O in Martian water from SOFIA/EXES
Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 2919-2932
Abstract:
Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localised variations in these ratios can inform us about the water cycle and surface-atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (𝐿S = 15◦ , 127◦ , 272◦ , 305◦ ) made with SOFIA/EXES. These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually-averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be ∼5% larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).Constraining the global composition of D/H and 18O/16O in Martian water using SOFIA/EXES
Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 2919-2932