Evolution of a dark vortex on Neptune with transient secondary features

Icarus Elsevier 387 (2022) 115123

Authors:

Michael H Wong, Lawrence Sromovsky, Patrick Fry, Agustín Sánchez-Lavega, Ricardo Hueso, Jon Legarreta, Amy A Simon, Raúl Morales-Juberías, Joshua Tollefson, Imke de Pater, Patrick Irwin

Abstract:

Dark spots on Neptune observed by Voyager and the Hubble Space Telescope are thought to be anticyclones with lifetimes of a few years, in contrast with very long-lived anticyclones in Jupiter and Saturn. The full life cycle of any Neptune dark spot has not been captured due to limited temporal coverage, but our Hubble observations of a recent feature, NDS-2018, provide the most complete long-term observational history of any dark vortex on Neptune. Past observations suggest some dark spots meet their demise by fading and dissipating without migrating meridionally. On the other hand, simulations predict a second pathway with equatorward migration and disruption. Our HST observations suggest NDS-2018 is following the second pathway. Some of the HST observations reveal transient dark features with widths of about 4000 to 9000 km, at latitudes between NDS-2018 and the equator. The secondary dark features appeared before changes in the meridional migration of NDS-2018 were seen. These features have somewhat smaller size and much smaller contrast compared to the main dark spot. Discrete secondary dark features of this scale have never been seen near previous dark spots, but global-scale dark bands are associated with several previous dark spots in addition to NDS-2018. The absolute photometric contrast of NDS-2018 (as large as 19%) is greater than previous dark spots, including the Great Dark Spot seen by Voyager. New simulations suggest that vortex internal circulation is weak relative to the background vorticity, presenting a clearly different case from stronger anticyclones observed on Jupiter and Saturn.

Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including dark spots

Journal of Geophysical Research: Planets Wiley 127:6 (2022) e2022JE007189

Authors:

Pgj Irwin, Na Teanby, Ln Fletcher, D Toledo, Gs Orton, Mh Wong, Mt Roman, S Pérez‐Hoyos, A James, J Dobinson

Abstract:

We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3–2.5 μm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5–7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1–2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1–2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1–2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately “snow out” (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of “dark spots”, such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.

A New Analysis of Eight Spitzer Phase Curves and Hot Jupiter Population Trends: Qatar-1b, Qatar-2b, WASP-52b, WASP-34b, and WASP-140b

The Astronomical Journal American Astronomical Society 163:6 (2022) 256

Authors:

EM May, KB Stevenson, Jacob L Bean, Taylor J Bell, Nicolas B Cowan, Lisa Dang, Jean-Michel Desert, Jonathan J Fortney, Dylan Keating, Eliza M-R Kempton, Thaddeus D Komacek, Nikole K Lewis, Megan Mansfield, Caroline Morley, Vivien Parmentier, Emily Rauscher, Mark R Swain, Robert T Zellem, Adam Showman

The impact of ultraviolet heating and cooling on the dynamics and observability of lava planet atmospheres

Monthly Notices of the Royal Astronomical Society Oxford University Press 513:4 (2022) 6125-6133

Authors:

T Giang Nguyen, Nicolas B Cowan, Raymond T Pierrehumbert, Roxana E Lupu, John E Moores

Abstract:

Lava planets have non-global, condensible atmospheres similar to icy bodies within the Solar system. Because they depend on interior dynamics, studying the atmospheres of lava planets can lead to understanding unique geological processes driven by their extreme environment. Models of lava planet atmospheres have thus far focused on either radiative transfer or hydrodynamics. In this study, we couple the two processes by introducing ultraviolet (UV) and infrared (IR) radiation to a turbulent boundary layer model. We also test the effect of different vertical temperature profiles on atmospheric dynamics. Results from the model show that UV radiation affects the atmosphere much more than IR. UV heating and cooling work together to produce a horizontally isothermal atmosphere away from the substellar point regardless of the vertical temperature profile. We also find that stronger temperature inversions induce stronger winds and hence cool the atmosphere. Our simulated transmission spectra of the bound atmosphere show a strong SiO feature in the UV that would be challenging to observe in the planet’s transit spectrum due to the precision required. Our simulated emission spectra are more promising, with significant SiO spectral features at 4.5 and 9 μm that can be observed with the James Webb Space Telescope. Different vertical temperature profiles produce discernible dayside emission spectra, but not in the way one would expect.

Plant power: Burning biomass instead of coal can help fight climate change—but only if done right

Bulletin of the Atomic Scientists Taylor & Francis 78:3 (2022) 125-127