Geodynamics of Super‐Earth GJ 486b
Journal of Geophysical Research Planets American Geophysical Union (AGU) 129:10 (2024)
JWST/NIRISS and HST: exploring the improved ability to characterise exoplanet atmospheres in the JWST era
Monthly Notices of the Royal Astronomical Society Oxford University Press 535:1 (2024) 27-46
Abstract:
The Hubble Space Telescope has been a pioneering instrument for studying the atmospheres of exoplanets, specifically its WFC3 and STIS instruments. With the launch of JWST, we are able to observe larger spectral ranges at higher precision. NIRISS/SOSS covers the range 0.6–2.8 microns, and thus, it can serve as a direct comparison to WFC3 (0.8–1.7 microns). We perform atmospheric retrievals of WFC3 and NIRISS transmission spectra of WASP-39 b in order to compare their constraining power. We find that NIRISS is able to retrieve precise H2O abundances that do not suffer a degeneracy with the continuum level due to the coverage of multiple spectral features. We also combine these data sets with spectra from STIS and find that challenges associated with fitting the steep optical slope can bias the retrieval results. In an effort to diagnose the differences between the WFC3 and NIRISS retrievals, we perform the analysis again on the NIRISS data cut to the same wavelength range as WFC3. We find that the water abundance is in strong disagreement with both the WFC3 and full NIRISS retrievals, highlighting the importance of wide wavelength coverage. Finally, we carry out mock retrievals on the different instruments, which shows further evidence of the challenges in constraining water abundance from the WFC3 data alone. Our study demonstrates the vast information gain of JWST’s NIRISS instrument over WFC3, highlighting the insights to be obtained from our new era of space-based instruments.The Thermal Structure and Composition of Jupiter's Great Red Spot From JWST/MIRI
Journal of Geophysical Research: Planets American Geophysical Union 129:10 (2024) e2024JE008415
Abstract:
Jupiter's Great Red Spot (GRS) was mapped by the James Webb Space Telescope (JWST)/Mid‐Infrared Instrument (4.9–27.9 μ ${\upmu }$ m) in July and August 2022. These observations took place alongside a suite of visual and infrared observations from; Hubble, JWST/NIRCam, Very Large Telescope/VISIR and amateur observers which provided both spatial and temporal context across the jovian disc. The stratospheric temperature structure retrieved using the NEMESIS software revealed a series of hot‐spots above the GRS. These could be the consequence of GRS‐induced wave activity. In the troposphere, the temperature structure was used to derive the thermal wind structure of the GRS vortex. These winds were only consistent with the independently determined wind field by JWST/NIRCam at 240 mbar if the altitude of the Hubble‐derived winds were located around 1,200 mbar, considerably deeper than previously assumed. No enhancement in ammonia was found within the GRS but a link between elevated aerosol and phosphine abundances was observed within this region. North‐south asymmetries were observed in the retrieved temperature, ammonia, phosphine and aerosol structure, consistent with the GRS tilting in the north‐south direction. Finally, a small storm was captured north‐west of the GRS that displayed a considerable excess in retrieved phosphine abundance, suggestive of vigorous convection. Despite this, no ammonia ice was detected in this region. The novelty of JWST required us to develop custom‐made software to resolve challenges in calibration of the data. This involved the derivation of the “FLT‐5” wavelength calibration solution that has subsequently been integrated into the standard calibration pipeline.JWST/NIRISS and HST: Exploring the improved ability to characterise exoplanet atmospheres in the JWST era
(2024)
Evidence for morning-to-evening limb asymmetry on the cool low-density exoplanet WASP-107 b
Nature Astronomy Springer Science and Business Media LLC 8:12 (2024) 1562-1574