Strict Limits on Potential Secondary Atmospheres on the Temperate Rocky Exo-Earth TRAPPIST-1 d

The Astrophysical Journal American Astronomical Society 989:2 (2025) 181

Authors:

Caroline Piaulet-Ghorayeb, Björn Benneke, Martin Turbet, Keavin Moore, Pierre-Alexis Roy, Olivia Lim, René Doyon, Thomas J Fauchez, Loïc Albert, Michael Radica, Louis-Philippe Coulombe, David Lafrenière, Nicolas B Cowan, Danika Belzile, Kamrul Musfirat, Mehramat Kaur, Alexandrine L’Heureux, Doug Johnstone, Ryan J MacDonald, Romain Allart, Lisa Dang, Lisa Kaltenegger, Stefan Pelletier, Jason F Rowe, Jake Taylor

Abstract:

The nearby TRAPPIST-1 system, with its seven small rocky planets orbiting a late-type M8 star, offers an unprecedented opportunity to search for secondary atmospheres on temperate terrestrial worlds. In particular, the 0.8 R⊕TRAPPIST-1 d lies at the edge of the habitable zone (Teq,A=0.3 = 262 K). Here we present the first 0.6–5.2 μm NIRSpec/PRISM transmission spectrum of TRAPPIST-1 d from two transits with JWST. We find that stellar contamination from unocculted bright heterogeneities introduces 500–1000 ppm visit-dependent slopes, consistent with constraints from the out-of-transit stellar spectrum. Once corrected, the transmission spectrum is flat within ±100–150 ppm, showing no evidence for a haze-like slope or molecular absorption despite NIRSpec/PRISM’s sensitivity to CH4, H2O, CO, SO2, and CO2. Our observations exclude clear, hydrogen-dominated atmospheres with high confidence (>3σ). We leverage our constraints on even trace amounts of CH4, H2O, and CO2 to further reject high mean molecular weight compositions analogous to a haze-free Titan, a cloud-free Venus, early Mars, and both Archean Earth and a cloud-free modern Earth scenario (>95% confidence). If TRAPPIST-1 d retains an atmosphere, it is likely extremely thin or contains high-altitude aerosols, with water cloud formation at the terminator predicted by 3D global climate models. Alternatively, if TRAPPIST-1 d is airless, our evolutionary models indicate that TRAPPIST-1 b, c, and d must have formed with ≲4 Earth oceans of water, though this would not preclude atmospheres on the cooler habitable-zone planets TRAPPIST-1 e, f, and g.

Simulating Intermediate Black Hole Mass Measurements for a Sample of Galaxies with Nuclear Star Clusters Using ELT/HARMONI High Spatial Resolution Integral-field Stellar Kinematics

Astronomical Journal American Astronomical Society 170:2 (2025) 124

Authors:

Dieu D Nguyen, Michele Cappellari, Hai N Ngo, Tinh QT Le, Tuan N Le, Khue NH Ho, An K Nguyen, Phong T On, Huy G Tong, Niranjan Thatte, Miguel Pereira-Santaella

Abstract:

Understanding the demographics of intermediate-mass black holes (IMBHs, MBH ≈ 102–105 M⊙) in low-mass galaxies is key to constraining black hole seed formation models, but detecting them is challenging due to their small gravitational sphere of influence (SOI). The upcoming Extremely Large Telescope (ELT) High Angular Resolution Monolithic Optical and Near-infrared Integral Field Spectrograph (HARMONI) instrument, with its high angular resolution, offers a promising solution. We present simulations assessing HARMONI’s ability to measure IMBH masses in nuclear star clusters (NSCs) of nearby dwarf galaxies. We selected a sample of 44 candidates within 10 Mpc. For two representative targets, NGC 300 and NGC 3115 dw01, we generated mock HARMONI integral-field data cubes using realistic inputs derived from Hubble Space Telescope imaging, stellar population models, and Jeans anisotropic models (JAM), assuming IMBH masses up to 1% of the NSC mass. We simulated observations across six near-infrared gratings at 10 mas resolution. Analyzing the mock data with standard kinematic extraction and JAM models in a Bayesian framework, we demonstrate that HARMONI can resolve the IMBH SOI and accurately recover masses down to ≈0.5% of the NSC mass within feasible exposure times. These results highlight HARMONI’s potential to revolutionize IMBH studies.

Assessing robustness and bias in 1D retrievals of 3D Global Circulation Models at high spectral resolution: a WASP-76 b simulation case study in emission

(2025)

Authors:

Lennart van Sluijs, Hayley Beltz, Isaac Malsky, Genevieve H Pereira, L Cinque, Emily Rauscher, Jayne Birkby

JWST reveals cosmic ray dominated chemistry in the local ULIRG IRAS 07251−0248

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press 542:1 (2025) L117-L125

Authors:

G Speranza, M Pereira-Santaella, M Agúndez, E González-Alfonso, I García-Bernete, JR Goicoechea, M Imanishi, D Rigopoulou, MG Santa-Maria, N Thatte

Abstract:

We analyse the ro-vibrational absorption bands of various molecular cations (HCO, HCNH, and NH) and neutral species (HCN, HNC, and HCN) detected in the James Webb Space Telescope/Mid-Infrared Instrument Medium Resolution Spectrometer spectrum (4.9–27.9 μm) of the local ultraluminous infrared galaxy IRAS 07251-0248. We find that the molecular absorptions are blueshifted by 160 km s relative to the systemic velocity of the target. Using local thermal equilibrium excitation models, we derive rotational temperatures () from 42 to 185 K for these absorption bands. This range of measured can be explained by infrared radiative pumping as a by-product of the strength, effective critical density, and opacity of each molecular band. Thus, these results suggest that these absorptions originate in a warm expanding gas shell (90–330 yr), which might be the base of the larger scale cold molecular outflow detected in this source. Finally, the elevated abundance of molecular cations can be explained by a high cosmic ray ionization rate, with log(/n in the range of -18.2 (from H) to -19.1 (inferred from HCO and NH, which are likely tracing denser gas), consistent with a cosmic ray dominated chemistry as predicted by chemical models.

Measuring the Sun’s radial velocity variability due to supergranulation over a magnetic cycle

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:4 (2025) 3942-3962

Authors:

Niamh K O’Sullivan, Suzanne Aigrain, Michael Cretignier, Ben Lakeland, Baptiste Klein, Xavier Dumusque, Nadège Meunier, Sophia Sulis, Megan Bedell, Annelies Mortier, Andrew Collier Cameron, Heather M Cegla

Abstract:

In recent years, supergranulation has emerged as one of the biggest challenges for the detection of Earth-twins in radial velocity planet searches. We used eight years of Sun-as-a-star radial velocity observations from HARPS-N to measure the quiet-Sun’s granulation and supergranulation properties of most of its 11-yr activity cycle, after correcting for the effects of magnetically active regions using two independent methods. In both cases, we observe a clear, order of magnitude variation in the time-scale of the supergranulation component, which is largest at activity minimum and is strongly anticorrelated with the relative Sunspot number. We also explored a range of observational strategies which could be employed to characterize supergranulation in stars other than the Sun, showing that a comparatively long observing campaign of at least 23 nights is required, but that up to 10 stars can be monitored simultaneously in the process. We conclude by discussing plausible explanations for the ‘supergranulation’ cycle.