A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres
Copernicus Publications (2025)
Abstract:
To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.Photochemistry versus Escape in the Trappist-1 planets.
(2025)
Abstract:
Super-Earth lava planet from birth to observation: photochemistry, tidal heating, and volatile-rich formation
Copernicus Publications (2025)
Abstract:
Larger-than-Earth exoplanets are sculpted by strong stellar irradiation, but it is unknown whence they originate. Two propositions are that they formed with rocky interiors and hydrogen-rich envelopes (‘gas-dwarfs’), or with bulk compositions rich in water-ices (‘water-worlds’) . Multiple observations of super-Earth L 98-59 d have revealed its low bulk-density, consistent with substantial volatile content alongside a rocky/metallic interior, and recent JWST spectroscopy evidences a high mean molecular weight atmosphere. Its density and composition make it a waymarker for disentangling the processes which separate super-Earths and sub-Neptunes across geological timescales. We simulate the possible pathways for L 98-59 d from birth up to the present day using a comprehensive evolutionary modelling framework. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the 'radiation-tide-rheology feedback'. Coupled numerical modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr timescales. Our analysis indicates that the planet formed with a large amount (>1.8 mass%) of sulfur and hydrogen, and a chemically-reducing mantle; inconsistent with both the canonical gas-dwarf and water-world scenarios. A thick atmosphere and tidal heating sustain a permanent deep magma ocean, allowing the dissolution and retention of volatiles within its mantle. Transmission features can be explained by in-situ photochemical production of SO2 in a high-molecular weight H2-H2S background. These results subvert the emerging gas-dwarf vs. water-world dichotomy of small planet categorisation, inviting a more nuanced classification framework. We show that interactions between planetary interiors and atmospheres shape their observable characteristics over billions of years.What are subNeptunes made of?
(2025)
Abstract:
A Panchromatic Characterization of the Evening and Morning Atmosphere of WASP-107 b: Composition and Cloud Variations, and Insight into the Effect of Stellar Contamination
The Astronomical Journal American Astronomical Society 170:1 (2025) 61-61