The ATLAS3D project - VIII. Modelling the formation and evolution of fast and slow rotator early-type galaxies within ΛCDM

Monthly Notices of the Royal Astronomical Society 417:2 (2011) 845-862

Authors:

S Khochfar, E Emsellem, P Serra, M Bois, K Alatalo, R Bacon, L Blitz, F Bournaud, M Bureau, M Cappellari, RL Davies, TA Davis, PT de Zeeuw, PA Duc, D Krajnović, H Kuntschner, PY Lablanche, RM McDermid, R Morganti, T Naab, T Oosterloo, M Sarzi, N Scott, AM Weijmans, LM Young

Abstract:

We propose a simple model for the origin of fast and slow rotator early-type galaxies (ETG) within the hierarchical Λcold dark matter (ΛCDM) scenario, that is based on the assumption that the mass fraction of stellar discs in ETGs is a proxy for the specific angular momentum expressed via λR. Within our model we reproduce the fraction of fast and slow rotators as a function of magnitude in the ATLAS3D survey, assuming that fast-rotating ETGs have at least 10 per cent of their total stellar mass in a disc component. In agreement with ATLAS3D observations we find that slow rotators are predominantly galaxies with M* > 1010.5M⊙ contributing ~20 per cent to the overall ETG population. We show in detail that the growth histories of fast and slow rotators are different, supporting the classification of ETGs into these two categories. Slow rotators accrete between ~50 and 90 per cent of their stellar mass from satellites and their most massive progenitors have on average up to three major mergers during their evolution. Fast rotators in contrast accrete less than 50 per cent and have on average less than one major merger in their past. We find that the underlying physical reason for the different growth histories is the slowing down and ultimately complete shut-down of gas cooling in massive galaxies. Once cooling and associated star formation in disc stop, galaxies grow via infall from satellites. Frequent minor mergers thereby destroy existing stellar discs via violent relaxation and also tend to lower the specific angular momentum of the main stellar body, lowering λR into the slow rotator regime. On average, the last gas-rich major merger interaction in slow rotators happens at z > 1.5, followed by a series of minor mergers. These results support the idea that kinematically decoupled cores (KDC) form during gas-rich major mergers at high z followed by minor mergers, which build-up the outer layers of the remnant, and make remnants that are initially too flat compared to observations become rounder. Fast rotators are less likely to form such KDCs due to the fact that they have on average less than one major merger in their past. Fast rotators in our model have different formation paths. The majority, 78 per cent, has bulge-to-total stellar mass ratios (B/T) > 0.5 and managed to grow stellar discs due to continued gas cooling or bulges due to frequent minor mergers. The remaining 22 per cent live in high-density environments and consist of low B/T galaxies with gas fractions below 15 per cent, that have exhausted their cold gas reservoir and have no hot halo from which gas can cool. These fast rotators most likely resemble the flattened disc-like fast rotators in the ATLAS3D survey. Our results predict that ETGs can change their state from fast to slow rotator and vice versa, while the former is taking place predominantly at low z (z < 2), the latter is occurring during cosmic epochs when cooling times are short and galaxies gas-rich. We predict that the ratio of the number density of slow to fast rotators is a strong function of redshift, with massive (>1010M⊙) fast rotators being more than one order of magnitude more frequent at z~ 2. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

New views of old galaxies

Astronomy & Geophysics Oxford University Press (OUP) 52:5 (2011) 5.18-5.24

The SAURON Project - XX. The Spitzer [3.6] - [4.5] colour in early-type galaxies: colours, colour gradients and inverted scaling relations

(2011)

Authors:

Reynier F Peletier, Elif Kutdemir, Guido van der Wolk, Jesus Falcon-Barroso, Roland Bacon, Martin Bureau, Michele Cappellari, Roger L Davies, P Tim de Zeeuw, Eric Emsellem, Davor Krajnovic, Harald Kuntschner, Richard M McDermid, Marc Sarzi, Nicholas Scott, Kristen L Shapiro, Remco CE van den Bosch, Glenn van de Ven

Modeling of the HERMES submillimeter source lensed by a dark matter dominated foreground group of galaxies

Astrophysical Journal 738:2 (2011)

Authors:

R Gavazzi, A Cooray, A Conley, JE Aguirre, A Amblard, R Auld, A Beelen, A Blain, R Blundell, J Bock, CM Bradford, C Bridge, D Brisbin, D Burgarella, P Chanial, E Chapin, N Christopher, DL Clements, P Cox, SG Djorgovski, CD Dowell, S Eales, L Earle, TP Ellsworth-Bowers, D Farrah, A Franceschini, H Fu, J Glenn, EA González Solares, M Griffin, MA Gurwell, M Halpern, E Ibar, RJ Ivison, M Jarvis, J Kamenetzky, S Kim, M Krips, L Levenson, R Lupu, A Mahabal, PD Maloney, C Maraston, L Marchetti, G Marsden, H Matsuhara, AMJ Mortier, E Murphy, BJ Naylor, R Neri, HT Nguyen, SJ Oliver, A Omont, MJ Page, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, N Rangwala, JI Rawlings, G Raymond, D Riechers, G Rodighiero, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, KS Scott, P Serra, N Seymour, DL Shupe, AJ Smith, M Symeonidis, KE Tugwell, M Vaccari, E Valiante, I Valtchanov, A Verma, JD Vieira, L Vigroux, L Wang, J Wardlow, D Wiebe, G Wright, CK Xu, G Zeimann, M Zemcov, J Zmuidzinas

Abstract:

We present the results of a gravitational lensing analysis of the bright z s = 2.957 submillimeter galaxy (SMG) HERMES found in the Herschel/SPIRE science demonstration phase data from the Herschel Multi-tiered Extragalactic Survey (HerMES) project. The high-resolution imaging available in optical and near-IR channels, along with CO emission obtained with the Plateau de Bure Interferometer, allows us to precisely estimate the intrinsic source extension and hence estimate the total lensing magnification to be μ = 10.9 ± 0.7. We measure the half-light radius R eff of the source in the rest-frame near-UV and V bands that characterize the unobscured light coming from stars and find R eff, * = [2.0 ± 0.1] kpc, in good agreement with recent studies on the SMG population. This lens model is also used to estimate the size of the gas distribution (Reff, gas = [1.1 ± 0.5] kpc) by mapping back in the source plane the CO (J = 5 → 4) transition line emission. The lens modeling yields a relatively large Einstein radius R Ein = 4.″10 ± 0″.02, corresponding to a deflector velocity dispersion of [483 ± 16] km s -1. This shows that HERMES is lensed by a galaxy group-size dark matter halo at redshift z l ∼ 0.6. The projected dark matter contribution largely dominates the mass budget within the Einstein radius with f dm(< R Ein) ∼ 80%. This fraction reduces to f dm(< R eff, G1 ≃ 4.5 kpc) ∼ 47% within the effective radius of the main deflecting galaxy of stellar mass M *, G1 = [8.5 ± 1.6] × 1011 M ⊙. At this smaller scale the dark matter fraction is consistent with results already found for massive lensing ellipticals at z ∼ 0.2 from the Sloan Lens ACS Survey. © 2011. The American Astronomical Society. All rights reserved.

A new model for the infrared emission of IRAS F10214+4724

Proceedings of the International Astronomical Union 7:S284 (2011) 205-209

Authors:

A Efstathiou, N Christopher, A Verma, R Siebenmorgen

Abstract:

We present a new model for the infrared emission of the high redshift hyperluminous infrared galaxy IRAS F10214+4724 which takes into account recent photometric data from Spitzer and Herschel that sample the peak of its spectral energy distribution. We first demonstrate that the combination of the AGN tapered disc and starburst models of Efstathiou and coworkers, while able to give an excellent fit to the average spectrum of type 2 AGN measured by Spitzer, fails to match the spectral energy distribution of IRAS F10214+4724. This is mainly due to the fact that the ν S ν distribution of the galaxy falls very steeply with increasing frequency (a characteristic of heavy absorption by dust) but shows a silicate feature in emission. We propose a model that assumes two components of emission: clouds that are associated with the narrow-line region and a highly obscured starburst. The emission from the clouds must suffer significantly stronger gravitational lensing compared to the emission from the torus to explain the observed spectral energy distribution. © 2012 International Astronomical Union.