The Tully-Fisher relations of early-type spiral and S0 galaxies

(2010)

Authors:

Michael J Williams, Martin Bureau, Michele Cappellari

A search for debris disks in the Herschel-ATLAS

Astronomy and Astrophysics 518:3 (2010)

Authors:

MA Thompson, DJB Smith, JA Stevens, MJ Jarvis, E Vidal Perez, J Marshall, L Dunne, S Eales, GJ White, L Leeuw, B Sibthorpe, M Baes, E González-Solares, D Scott, J Vieiria, A Amblard, R Auld, DG Bonfield, D Burgarella, S Buttiglione, A Cava, DL Clements, A Cooray, A Dariush, G De Zotti, S Dye, S Eales, D Frayer, J Fritz, J Gonzalez-Nuevo, D Herranz, E Ibar, RJ Ivison, G Lagache, M Lopez-Caniego, S Maddox, M Negrello, E Pascale, M Pohlen, E Rigby, G Rodighiero, S Samui, S Serjeant, P Temi, I Valtchanov, A Verma

Abstract:

Aims. We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods. We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results. We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. © 2010 ESO.

Herschel-ATLAS: Blazars in the science demonstration phase field

Astronomy and Astrophysics 518:3 (2010)

Authors:

J González-Nuevo, G De Zotti, P Andreani, EJ Barton, F Bertoldi, M Birkinshaw, L Bonavera, S Buttiglione, J Cooke, A Cooray, G Danese, L Dunne, S Eales, L Fan, MJ Jarvis, HR Klöckner, E Hatziminaoglou, D Herranz, DH Hughes, A Lapi, A Lawrence, L Leeuw, M Lopez-Caniego, M Massardi, T Mauch, MJ Michałowski, M Negrello, S Rawlings, G Rodighiero, S Samui, S Serjeant, JD Vieira, G White, A Amblard, R Auld, M Baes, DG Bonfield, D Burgarella, A Cava, DL Clements, A Dariush, S Dye, D Frayer, J Fritz, E Ibar, RJ Ivison, G Lagache, S Maddox, E Pascale, M Pohlen, E Rigby, B Sibthorpe, DJB Smith, P Temi, M Thompson, I Valtchanov, A Verma

Abstract:

To investigate the poorly constrained sub-mm counts and spectral properties of blazars we searched for these in the Herschel-ATLAS (H-ATLAS) science demonstration phase (SDP) survey catalog. We cross-matched 500 μm sources brighter than 50 mJy with the FIRST radio catalogue. We found two blazars, both previously known. Our study is among the first blind blazar searches at sub-mm wavelengths, i.e., in the spectral regime where little is still known about the blazar SEDs, but where the synchrotron peak of the most luminous blazars is expected to occur. Our early results are consistent with educated extrapolations of lower frequency counts and question indications of substantial spectral curvature downwards and of spectral upturns at mm wavelengths. One of the two blazars is identified with a Fermi/LAT γ-ray source and a WMAP source. The physical parameters of the two blazars are briefly discussed. These observations demonstrate that the H-ATLAS survey will provide key information about the physics of blazars and their contribution to sub-mm counts. © 2010 ESO.

Herschel-ATLAS: Blazars in the science demonstration phase field

Astronomy and Astrophysics 518:3 (2010)

Authors:

J González-Nuevo, G De Zotti, P Andreani, EJ Barton, F Bertoldi, M Birkinshaw, L Bonavera, S Buttiglione, J Cooke, A Cooray, G Danese, L Dunne, S Eales, L Fan, MJ Jarvis, HR Klöckner, E Hatziminaoglou, D Herranz, DH Hughes, A Lapi, A Lawrence, L Leeuw, M Lopez-Caniego, M Massardi, T Mauch, MJ Michałowski, M Negrello, S Rawlings, G Rodighiero, S Samui, S Serjeant, JD Vieira, G White, A Amblard, R Auld, M Baes, DG Bonfield, D Burgarella, A Cava, DL Clements, A Dariush, S Dye, D Frayer, J Fritz, E Ibar, RJ Ivison, G Lagache, S Maddox, E Pascale, M Pohlen, E Rigby, B Sibthorpe, DJB Smith, P Temi, M Thompson, I Valtchanov, A Verma

Abstract:

To investigate the poorly constrained sub-mm counts and spectral properties of blazars we searched for these in the Herschel-ATLAS (H-ATLAS) science demonstration phase (SDP) survey catalog. We cross-matched 500 μm sources brighter than 50 mJy with the FIRST radio catalogue. We found two blazars, both previously known. Our study is among the first blind blazar searches at sub-mm wavelengths, i.e., in the spectral regime where little is still known about the blazar SEDs, but where the synchrotron peak of the most luminous blazars is expected to occur. Our early results are consistent with educated extrapolations of lower frequency counts and question indications of substantial spectral curvature downwards and of spectral upturns at mm wavelengths. One of the two blazars is identified with a Fermi/LAT γ-ray source and a WMAP source. The physical parameters of the two blazars are briefly discussed. These observations demonstrate that the H-ATLAS survey will provide key information about the physics of blazars and their contribution to sub-mm counts. © 2010 ESO.

Herschel-ATLAS: Dust temperature and redshift distribution of SPIRE and PACS detected sources using submillimetre colours

Astronomy and Astrophysics 518:1 (2010)

Authors:

A Amblard, A Cooray, P Serra, P Temi, E Barton, M Negrello, R Auld, M Baes, IK Baldry, S Bamford, A Blain, J Bock, D Bonfield, D Burgarella, S Buttiglione, E Cameron, A Cava, D Clements, S Croom, A Dariush, G De Zotti, S Driver, J Dunlop, L Dunne, S Dye, S Eales, D Frayer, J Fritz, JP Gardner, J Gonzalez-Nuevo, D Herranz, D Hill, A Hopkins, DH Hughes, E Ibar, RJ Ivison, M Jarvis, DH Jones, L Kelvin, G Lagache, L Leeuw, J Liske, M Lopez-Caniego, J Loveday, S Maddox, M Michałowski, P Norberg, H Parkinson, JA Peacock, C Pearson, E Pascale, M Pohlen, C Popescu, M Prescott, A Robotham, E Rigby, G Rodighiero, S Samui, A Sansom, D Scott, S Serjeant, R Sharp, B Sibthorpe, DJB Smith, MA Thompson, R Tuffs, I Valtchanov, E Van Kampen, P Van Der Werf, A Verma, J Vieira, C Vlahakis

Abstract:

We present colour-colour diagrams of detected sources in the Herschel-ATLAS science demonstration field from 100 to 500 μm using both PACS and SPIRE. We fit isothermal modified black bodies to the spectral energy distribution (SED) to extract the dust temperature of sources with counterparts in Galaxy And Mass Assembly (GAMA) or SDSS surveys with either a spectroscopic or a photometric redshift. For a subsample of 330 sources detected in at least three FIR bands with a significance greater than 3σ, we find an average dust temperature of (28±8) K. For sources with no known redshift, we populate the colour-colour diagram with a large number of SEDs generated with a broad range of dust temperatures and emissivity parameters, and compare to colours of observed sources to establish the redshift distribution of this sample. For another subsample of 1686 sources with fluxes above 35 mJy at 350 μm and detected at 250 and 500 μm with a significance greater than 3σ, we find an average redshift of 2.2±0.6. © 2010 ESO.