The star-formation histories of early-type galaxies from ATLAS3D
      Proceedings of the International Astronomical Union  7:S284 (2011) 244-247
    
        
    
        Abstract:
We present an exploration of the integrated stellar populations of early-type galaxies (ETGs) from the ATLAS3D survey. We use two approaches: firstly the application of line-indices interpreted through single stellar population (SSP) models, which provide a single value of age, metallicity and abundance ratio. And secondly, by fitting a linear combination of SSP spectra to our data, smoothly weighted in the free parameters of age and metallicity, thereby inferring a star-formation history of these galaxies. Despite the significant differences in these approaches, we obtain generally consistent results, such that galaxies that are more massive appear older with enhanced abundance ratios using line indices, and have shorter star-formation histories weighted to early times. We highlight two limitations of the index-SSP approach. Firstly the SSP-equivalent ages belie the fact that ETGs are overwhelmingly composed of ancient stars. Secondly, the young stellar contributions implied in our star formation histories are required to obtain realistic UV-optical colours. We remark that, even fitting solar-abundance models, we can recover a star-formation duration that correlates with the measured alpha-enhancement, in agreement with other recent work. © 2012 International Astronomical Union.Young stars in nearby early-type galaxies: SED fitting based on ultraviolet (UV) and optical imaging
      Proceedings of the International Astronomical Union  7:S284 (2011) 240-243
    
        
    
        Abstract:
Recent studies from the Galaxy Evolution Explore (GALEX) ultraviolet (UV) data have demonstrated that the recent star formation is more common in early-type galaxies (ETGs) than we used to believe. The UV is one order of magnitude more sensitive than the optical to the presence of young stellar populations. The near-ultraviolet (NUV) lights of ETGs, especially, are used to reveal their residual star formation history. Here we used the GALEX UV data of 34 nearby early-type galaxies from the SAURON sample, all of which have optical data from MDM Observatory. At least 15% of the galaxies in this sample show blue UV-optical colours suggesting recent star formation (Jeong et al. 2009). These NUV blue galaxies are generally low velocity dispersion systems and change the slopes of scaling relations (colour-magnitude relations and fundamental planes) and increase the scatters. To quantify the amount of recent star formation in our sample, we assume two bursts of star formation, allowing us to constrain the age and mass fraction of the young component pixel by pixel (Jeong et al. 2007). The pixel-by-pixel SED fitting based on UV and optical imaging reveals that the mass fraction of young (< 1 Gyr old) stars in ETGs varies between 1 and 3% in the nearby universe (Jeong et al. in prep.). We will compare our results with the prediction from the hierarchical merger paradigm to understand the mechanism of low-level recent star formation observed in early-type galaxies. © 2012 International Astronomical Union.The ATLAS3D Project-- VIII: Modelling the Formation and Evolution of Fast and Slow Rotator Early-Type Galaxies within $\Lambda$CDM
        (2011)
    
        
    
    
        
      Oxford SWIFT IFS and multi-wavelength observations of the Eagle galaxy at z=0.77
      ArXiv 1107.2931 (2011)
    
        
    
        Abstract:
The `Eagle' galaxy at a redshift of 0.77 is studied with the Oxford Short Wavelength Integral Field Spectrograph (SWIFT) and multi-wavelength data from the All-wavelength Extended Groth strip International Survey (AEGIS). It was chosen from AEGIS because of the bright and extended emission in its slit spectrum. Three dimensional kinematic maps of the Eagle reveal a gradient in velocity dispersion which spans 35-75 +/- 10 km/s and a rotation velocity of 25 +/- 5 km/s uncorrected for inclination. Hubble Space Telescope images suggest it is close to face-on. In comparison with galaxies from AEGIS at similar redshifts, the Eagle is extremely bright and blue in the rest-frame optical, highly star-forming, dominated by unobscured star-formation, and has a low metallicity for its size. This is consistent with its selection. The Eagle is likely undergoing a major merger and is caught in the early stage of a star-burst when it has not yet experienced metal enrichment or formed the mass of dust typically found in star-forming galaxies.Discovery of an active galactic nucleus driven molecular outflow in the local early-type galaxy NGC 1266
      Astrophysical Journal  735:2 (2011)