The Atlas-3D project - IX. The merger origin of a fast and a slow rotating Early-Type Galaxy revealed with deep optical imaging: first results

(2011)

Authors:

Pierre-Alain Duc, Jean-Charles Cuillandre, Paolo Serra, Leo Michel-Dansac, Etienne Ferriere, Katherine Alatalo, Leo Blitz, Maxime Bois, Frederic Bournaud, Martin Bureau, Michele Cappellari, Roger L Davies, Timothy A Davis, PT de Zeeuw, Eric Emsellem, Sadegh Khochfar, Davor Krajnovic, Harald Kuntschner, Pierre-Yves Lablanche, Richard M McDermid, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Anne-Marie Weijmans, Lisa M Young

Gyes, a multifibre spectrograph for the CFHT

EAS Publications Series 45 (2011) 219-222

Authors:

P Bonifacio, S Mignot, JL Dournaux, P François, E Caffau, F Royer, C Babusiaux, F Arenou, C Balkowski, O Bienaymé, D Briot, R Carlberg, M Cohen, GB Dalton, B Famaey, G Fasola, Y Frémat, A Gómez, I Guinouard, M Haywood, V Hill, JM Huet, D Katz, D Horville, R Kudritzky, R Lallement, P Laporte, P De Laverny, B Lemasle, IJ Lewis, C Martayan, R Monier, D Mourard, N Nardetto, AR Blanco, N Robichon, AC Robin, M Rodrigues, C Soubiran, C Turon, K Venn, Y Viala

Abstract:

We have chosen the name of GYES, one of the mythological giants with one hundred arms, offspring of Gaia and Uranus, for our instrument study of a multifibre spectrograph for the prime focus of the Canada-France-Hawaii Telescope. Such an instrument could provide an excellent ground-based complement for the Gaia mission and a northern complement to the HERMES project on the AAT. The CFHT is well known for providing a stable prime focus environment, with a large field of view, which has hosted several imaging instruments, but has never hosted a multifibre spectrograph. Building upon the experience gained at GÉPI with FLAMES-Giraffe and X-Shooter, we are investigating the feasibility of a high multiplex spectrograph (about 500 fibres) over a field of view one degree in diameter. We are investigating an instrument with resolution in the range 15000 to 30000, which should provide accurate chemical abundances for stars down to 16th magnitude and radial velocities, accurate to 1 kms -1 for fainter stars. The study is led by GÉPI-Observatoire de Paris with a contribution from Oxford for the study of the positioner. The financing for the study comes from INSU CSAA and Observatoire de Paris. The conceptual study will be delivered to CFHT for review by October 1st 2010. © EAS, EDP Sciences 2011.

Massive molecular outflows and negative feedback in ULIRGs observed by herschel-pacs

Astrophysical Journal Letters 733:1 PART 2 (2011)

Authors:

E Sturm, E Gonzlez-Alfonso, S Veilleux, J Fischer, J Graci-Carpio, S Hailey-Dunsheath, A Contursi, A Poglitsch, A Sternberg, R Davies, R Genzel, D Lutz, L Tacconi, A Verma, R Maiolino, JA De Jong

Abstract:

Mass outflows driven by stars and active galactic nuclei (AGNs) are a key element in many current models of galaxy evolution. They may produce the observed black-hole-galaxy mass relation and regulate and quench both star formation in the host galaxy and black hole accretion. However, observational evidence of such feedback processes through outflows of the bulk of the star-forming molecular gas is still scarce. Here we report the detection of massive molecular outflows, traced by the hydroxyl molecule (OH), in far-infrared spectra of ULIRGs obtained with Herschel-PACS as part of the SHINING key project. In some of these objects the (terminal) outflow velocities exceed 1000kms-1, and their outflow rates (up to 1200 M yr -1) are several times larger than their star formation rates. We compare the outflow signatures in different types of ULIRGs and in starburst galaxies to address the issue of the energy source (AGN or starburst) of these outflows. We report preliminary evidence that ULIRGs with a higher AGN luminosity (and higher AGN contribution to L IR) have higher terminal velocities and shorter gas depletion timescales. The outflows in the observed ULIRGs are able to expel the cold gas reservoirs from the centers of these objects within 106-108 years. © 2011. The American Astronomical Society. All rights reserved.

The Atlas3D Project - VI. Simulations of binary galaxy mergers and the link with Fast Rotators, Slow Rotators, and Kinematically Distinct Cores

(2011)

Authors:

Maxime Bois, Eric Emsellem, Frederic Bournaud, Katherine Alatalo, Leo Blitz, Martin Bureau, Michele Cappellari, Roger L Davies, Timothy A Davis, PT de Zeeuw, Pierre-Alain Duc, Sadegh Khochfar, Davor Krajnovic, Harald Kuntschner, Pierre-Yves Lablanche, Richard M McDermid, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M Young

Discovery of a multiply lensed submillimeter galaxy in early HerMES Herschel/SPIRE data

Astrophysical Journal Letters 732:2 PART II (2011)

Authors:

A Conley, A Cooray, JD Vieira, EAG Solares, S Kim, JE Aguirre, A Amblard, R Auld, AJ Baker, A Beelen, A Blain, R Blundell, J Bock, CM Bradford, C Bridge, D Brisbin, D Burgarella, JM Carpenter, P Chanial, E Chapin, N Christopher, DL Clements, P Cox, SG Djorgovski, CD Dowell, S Eales, L Earle, TP Ellsworth-Bowers, D Farrah, A Franceschini, D Frayer, H Fu, R Gavazzi, J Glenn, M Griffin, MA Gurwell, M Halpern, E Ibar, RJ Ivison, M Jarvis, J Kamenetzky, M Krips, L Levenson, R Lupu, A Mahabal, PD Maloney, C Maraston, L Marchetti, G Marsden, H Matsuhara, AMJ Mortier, E Murphy, BJ Naylor, R Neri, HT Nguyen, SJ Oliver, A Omont, MJ Page, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, N Rangwala, JI Rawlings, G Raymond, D Riechers, G Rodighiero, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, K Scott, P Serra, N Seymour, DL Shupe, AJ Smith, M Symeonidis, KE Tugwell, M Vaccari, E Valiante, I Valtchanov, A Verma, MP Viero, L Vigroux, L Wang, D Wiebe, G Wright, CK Xu, G Zeimann, M Zemcov, J Zmuidzinas

Abstract:

We report the discovery of a bright (f (250 μm)>400 mJy), multiply lensed submillimeter galaxy HERMES J105751.1+573027 in Herschel/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880 μm Submillimeter Array observations resolve at least four images with a large separation of ∼9″. A high-resolution adaptive optics Kp image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of z = 2.9575, and the lensing model gives a total magnification of μ ∼ 11 ± 1. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, 88 ± 3 K. We derive a lensing-corrected total IR luminosity of (1.43 ± 0.09) × 1013 L⊙, implying a star formation rate of ∼2500 M⊙ yr-1. However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early Herschel data, and many more are expected as additional data are collected. © 2011. The American Astronomical Society. All rights reserved.