The Ejection of Transient Jets in Swift J1727.8−1613 Revealed by Time-dependent Visibility Modeling

The Astrophysical Journal Letters American Astronomical Society 984:2 (2025) L53

Authors:

Callan M Wood, James CA Miller-Jones, Arash Bahramian, Steven J Tingay, He-Xin Liu, Diego Altamirano, Rob Fender, Elmar Körding, Dipankar Maitra, Sera Markoff, David M Russell, Thomas D Russell, Craig L Sarazin, Gregory R Sivakoff, Roberto Soria, Alexandra J Tetarenko, Valeriu Tudose

Abstract:

High angular resolution radio observations of relativistic jets are necessary to understand the causal connection between accretion and jet ejection in low-mass X-ray binaries. Images from these observations can be difficult to reconstruct due to the rapid intra-observational motion and variability of transient jets. We have developed a time-dependent visibility model fitting and self-calibration procedure and applied it to a single 4 hr VLBA observation of the low-mass X-ray binary Swift J1727.8−1613 during the bright flaring period of its 2023 outburst. This allowed us to detect and model a slightly resolved self-absorbed compact core, as well as three downstream transient jet knots. We were able to precisely measure the proper motion and flux density variability of these three jet knots, as well as (for the first time) their intra-observational expansion. Using simultaneous multifrequency data, we were also able to measure the spectral index of the furthest downstream jet knot, and the core, as well as the frequency-dependent core shift between 2.3 and 8.3 GHz. Using these measurements, we inferred the ejection dates of the three jet knots, including one to within ±40 minutes, which is one of the most precise ever measured. The ejection of the transient jet knots coincided with a bright X-ray flare and a drastic change in the X-ray spectral and timing properties as seen by HXMT, which is the clearest association ever seen between the launching of transient relativistic jets in an X-ray binary and a sudden change in the X-ray properties of the accretion inflow.

The origin of the very-high-energy radiation along the jet of Centaurus A

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:4 (2025) 3697-3713

Authors:

Cainã de Oliveira, James H Matthews, Vitor de Souza

Abstract:

As the closest known active galactic nucleus, Centaurus A (Cen A) provides a rich environment for astrophysical exploration. It has been observed across wavelengths from radio to gamma-rays, and indications of ongoing particle acceleration have been found on different scales. Recent measurements of very-high-energy (VHE) gamma-rays ( GeV) by the HESS observatory have inferred the presence of ultra-relativistic electrons along Cen A’s jet, yet the underlying acceleration mechanism remains uncertain. Various authors have proposed that jet substructures, known as knots, may serve as efficient particle accelerators. In this study, we investigate the hypothesis that knots are the particle acceleration sites along Cen A’s jets. We focus on stationary knots, and assume that they result from interactions between the jet and the stellar winds of powerful stars. By combining relativistic hydrodynamic simulations and shock acceleration theory with the radio and X-ray data, we compare theoretical predictions with morphological and spectral data from different knots. We estimate the maximum electron energy and the resulting VHE gamma-ray emission. Our findings suggest that electrons accelerated at the knots are responsible for the gamma-ray spectrum detected in the VHE band.

ALMACAL - XIV. X-Shooter spectroscopy, infrared properties, and radio SEDs of calibrators

Monthly Notices of the Royal Astronomical Society 539:3 (2025) 1977-2020

Authors:

S Weng, EM Sadler, E Kerrison, V Bollo, C Péroux, M Zwaan, EK Mahony, JR Allison, J Chen, R Szakacs, H Yoon

Abstract:

The ALMACAL −22 surv e y includes o v er 2700 h of observations of ALMA phase and amplitude calibrators, spanning frequencies from 84 to 950 GHz across bands 3 to 10. In total, 687 out of the 1047 calibrators have redshifts confirmed with spectroscopy and we find an additional 50 featureless blazars. The redshift distribution of the ALMACAL-22 sample peaks at z ≈1 and spans a wide range, from the nuclei of nearby galaxies at z ≪0 . 01 to quasars at z = 3 . 742. 70 new VLT/X-Shooter spectra of these sources co v ering UV to NIR wavelengths are also presented, which will be used in future stacking experiments to search for cold gas in the circumgalactic medium. Infrared magnitudes from WISE indicate that the majority of the sources are consistent with being quasars or blazars. After fitting the radio spectral energy distributions of the calibrators, we find that most ALMA calibrators exhibit peaked spectra or are re-triggered which is surprising given the large number of blazars in the sample. The peak frequencies span three orders of magnitude from 100 MHz to 170 GHz, corresponding to linear sizes ranging from sub-pc to > 10 kpc. In the future, when combined with high-resolution radio imaging, these results will of fer v aluable constraints on the molecular gas content of the CGM, as well as the ages and duty cycles of AGN jets. The e ver-gro wing ALMACAL data set will remain an indispensable resource for studying the various aspects of galaxy formation and evolution.

Relativistic ejecta from stellar mass black holes: insights from simulations and synthetic radio images

(2025)

Authors:

Katie Savard, James H Matthews, Rob Fender, Ian Heywood

MeerKAT discovers a jet-driven bow shock near GRS 1915+105. How an invisible large-scale jet sculpts a microquasar's environment

(2025)

Authors:

SE Motta, P Atri, James H Matthews, Jakob van den Eijnden, Rob P Fender, James CA Miller-Jones, Ian Heywood, Patrick Woudt