Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra
Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e062
Abstract:
We measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from to 500. We applied two flux density cuts at and mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18 mJy cut to deviate for due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at 5.5 , irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias and a constant amplitude galaxy bias . By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at mJy ( mJy) with ( ) and a constant amplitude bias with ( ). When is a free parameter for the same models at mJy ( mJy) with the constant model we found ( ), while with the constant amplitude model we measured ( ), respectively. Our results agree at with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.A Coherent Radio Burst from an X-Ray Neutron Star in the Carina Nebula
The Astrophysical Journal Letters American Astronomical Society 985:1 (2025) L3
Abstract:
The neutron star zoo comprises several subpopulations that range from energetic magnetars and thermally emitting X-ray neutron stars to radio-emitting pulsars. Despite studies over the last five decades, it has been challenging to obtain a clear physical link between the various populations of neutron stars, vital to constrain their formation and evolutionary pathways. Here we report the detection of a burst of coherent radio emission from a known radio-quiet, thermally emitting neutron star 2XMM J104608.7−594306 in the Carina Nebula. The burst has a distinctive sharp rise followed by a decay made up of multiple components, which is unlike anything seen from other radio-emitting neutron stars. It suggests an episodic event from the neutron star surface, akin to transient radio emission seen from magnetars. The radio burst confirms that the X-ray source is a neutron star and suggests a new link between these apparently radio-quiet X-ray-emitting sources and other transient or persistent radio-emitting neutron stars. It also suggests that a common physical mechanism for emission might operate over a range of magnetic field strengths and neutron star ages. We propose that 2XMM J104608.7−594306 straddles the boundary between young, energetic neutron stars and their evolved radio-emitting cousins and may bridge these two populations. The detection of such a radio burst also shows that other radio-quiet neutron stars may also emit such sporadic radio emission that has been missed by previous radio surveys and highlights the need for regular monitoring of this unique subpopulation of neutron stars.MeerKAT discovery of a hyperactive repeating fast radio burst source
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:2 (2025) 1685-1700
Abstract:
We present the discovery and localization of a repeating fast radio burst (FRB) source from the MeerTRAP project, a commensal fast radio transient search programme using the MeerKAT telescope. FRB 20240619D was first discovered on 2024 June 19 with three bursts being detected within 2 min in the MeerKAT L band (856–1712 MHz). We conducted follow-up observations of FRB 20240619D with MeerKAT using the Ultra-High Frequency (UHF; MHz), L-band and S-band (1968–2843 MHz) receivers one week after its discovery, and recorded a total of 249 bursts. The MeerKAT-detected bursts exhibit band-limited emission with an average fractional bandwidth of 0.31, 0.34, and 0.48 in the UHF, L-band, and S-band, respectively. We find our observations are complete down to a fluence limit of Jy ms, above which the cumulative burst rate follows a power law with and in the UHF and L band, respectively. The near-simultaneous L-band, UHF, and S-band observations reveal a frequency dependent burst rate with more bursts being detected in the L band than in the UHF and S band, suggesting a spectral turnover in the burst energy distribution of FRB 20240619D. Our polarimetric analysis demonstrates that most of the bursts have linear polarization fractions and circular polarization fractions. We find no optical counterpart of FRB 20240619D in the MeerLICHT optical observations simultaneous to the radio observations and set a fluence upper limit in MeerLICHT’s q band of 0.76 Jy ms and an optical-to-radio fluence ratio limit of 0.034 for a 15 s exposure.MeerKAT discovery of a hyperactive repeating fast radio burst source
(2025)
The Evolutionary Map of the Universe: A new radio atlas for the southern hemisphere sky
(2025)