Extreme sensitivity of a topochemical reaction to cation substitution: SrVO2H versus SrV1-xTixO1.5H1.5

Inorganic Chemistry American Chemical Society 57:5 (2018) 2890-2898

Authors:

Midori Amano Patino, Dihao Zeng, Stephen Blundell, John McGrady, Michael Hayward

Abstract:

The anion-ordered oxide-hydride SrVO2H is an antiferromagnetic insulator due to strong correlations between vanadium d electrons. In an attempt to hole-dope SrVO2H into a metallic state, a strategy of first preparing SrV1-xTixO3 phases and then converting them to the corresponding SrV1-xTixO2H phases via reaction with CaH2 was followed. This revealed that the solid solution between SrVO3 and SrTiO3 is only stable at high temperature. In addition, reactions between SrV0.95Ti0.05O3 and CaH2 were observed to yield SrV0.95Ti0.05O1.5H1.5 not SrV0.95Ti0.05O2H. This dramatic change in reactivity for a very modest change in initial chemical composition is attributed to an electronic destabilization of SrVO2H on titanium substitution. Density functional theory calculations indicate that the presence of an anion-ordered, tetragonal SrMO2H phase is uniquely associated with a d2 electron count and that titanium substitution leads to an electronic destabilization of SrV1-xTixO2H phases, which, ultimately, drives further reaction of SrV1-xTixO2H to SrV1-xTixO1.5H1.5. The observed sensitivity of the reaction products to the chemical composition of initial phases highlights some of the difficulties associated with electronically doping metastable materials prepared by topochemical reactions.

Emergence, causation and storytelling: condensed matter physics and the limitations of the human mind

Philosophica Department of Philosophy and Moral Science at Ghent University 92 (2018) 139-164

Abstract:

The physics of matter in the condensed state is concerned with problems in which the number of constituent particles is vastly greater than can be easily comprehended. The inherent physical limitations of the human mind are fundamental and restrict the way in which we can interact with and learn about the universe. This presents challenges for developing scientific explanations that are met by emergent narratives, concepts and arguments that have a non-trivial relationship to the underlying microphysics. By examining examples within condensed matter physics, and also from cellular automata, I show how such emergent narratives efficiently describe elements of reality.

Comparative study of the magnetic properties of La3Ni2B′O9for B′ = Nb, Taor Sb

Journal of Solid State Chemistry 258 (2018) 825-834

Authors:

CM Chin, PD Battle, SJ Blundell, E Hunter, F Lang, M Hendrickx, R Paria Sena, J Hadermann

Abstract:

© 2017 Elsevier Inc. Polycrystalline samples of La 3 Ni 2 NbO 9 and La 3 Ni 2 TaO 9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (µSR); the latter technique was also applied to La 3 Ni 2 SbO 9 . On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B′ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La 3 Ni 2 B′O 9 (B′ = Nb or Ta) at 5 K although in each case µSR identified the presence of static spins below 30 K. Magnetometry showed that La 3 Ni 2 NbO 9 behaves as a spin glass below 29 K but significant short-range interactions are present in La 3 Ni 2 TaO 9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.

Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb

Journal of Solid State Chemistry Elsevier 258 (2017) 825-834

Authors:

Chun-Mann Chin, Peter Battle, Stephen J Blundell, Emily C Hunter, Franz Lang, M Hendrickx, R Paria Sena, J Hadermann

Abstract:

Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (µSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B’ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B’O(B’ = Nb or Ta) at 5 K although in each case µSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.

Two-gap superconductivity with line nodes in CsCa$_2$Fe$_4$As$_4$F$_2$

(2017)

Authors:

Franziska KK Kirschner, Devashibhai T Adroja, Zhi-Cheng Wang, Franz Lang, Michael Smidman, Peter J Baker, Guang-Han Cao, Stephen J Blundell