Magnetic collimation of petawatt driven fast electron beam for prospective fast ignition studies
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
Collimated transport of fast electron beam through solid density matter is one of the key issues behind the success of the fast ignition scheme by means of which the required amount of ignition energy can be delivered to the hot spot region of the compressed fuel. Here we report on a hot electron beam collimation scheme in solids by tactfully using the strong magnetic fields generated by an electrical resistivity gradient according to Faraday's law. This was accomplished by appropriately fabricating the targets in such a way that the electron beam is directed to flow in a metal which is embedded in a much lower resistivity and atomic number metal. Experimental results showed guided transport of hot electron beam over hundreds of microns length inside solid density plasma, which were obtained from two experiments examining the scheme for petawatt laser driven hot electron beam while employing various target configurations. © 2010 IOP Publishing Ltd.Measurement of fast electrons spectra generated by interaction between solid target and peta watt laser
Journal of Physics: Conference Series 244:PART 2 (2010)
Abstract:
Fast electron energy spectra have been measured for a range of intensities between 1018 Wcm-2 and 1021 Wcm-2 and for different target materials using electron spectrometers. Several experimental campaigns were conducted on peta watt laser facilities at the Rutherford Appleton Laboratory and Osaka University. In these experimental campaigns, the pulse duration was varied from 0.5 ps to 5 ps. The laser incident angle was also changed from normal incidence to 40° in p-polarized. The results show a reduction from the ponderomotive scaling on fast electrons over 1020 Wcm-2. © 2010 IOP Publishing Ltd.Measurement of the dynamic response of compressed hydrogen by inelastic X-ray scattering
Journal of Physics: Conference Series 244:PART 4 (2010)
Abstract:
Measurement of the dynamic properties of hydrogen and helium under extreme pressures is a key to understanding the physics of planetary interiors. The inelastic scattering signal from statically compressed hydrogen inside diamond anvil cells at 2.8 GPa and 6.4 GPa was measured at the Diamond Light Source synchrotron facility in the UK. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasmas was obtained from spectral shifts in the scattering data and compared to predictions by the Utsumi-Ichimaru theory for degenerate electron liquids. © 2010 IOP Publishing Ltd.Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser
High Energy Density Physics 6:1 (2010) 109-112
Abstract:
The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 1016 W cm-2 at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5-8 eV with electron density in the range 1021-1022 cm-3. These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication. © 2009 Elsevier B.V. All rights reserved.Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures
High Energy Density Physics 6:1 (2010) 15-20