Soft x-ray free electron laser microfocus for exploring matter under extreme conditions.

Opt Express 17:20 (2009) 18271-18278

Authors:

AJ Nelson, S Toleikis, H Chapman, S Bajt, J Krzywinski, J Chalupsky, L Juha, J Cihelka, V Hajkova, L Vysin, T Burian, M Kozlova, RR Fäustlin, B Nagler, SM Vinko, T Whitcher, T Dzelzainis, O Renner, K Saksl, AR Khorsand, PA Heimann, R Sobierajski, D Klinger, M Jurek, J Pelka, B Iwan, J Andreasson, N Timneanu, M Fajardo, JS Wark, D Riley, T Tschentscher, J Hajdu, RW Lee

Abstract:

We have focused a beam (BL3) of FLASH (Free-electron LASer in Hamburg: lambda = 13.5 nm, pulse length 15 fs, pulse energy 10-40 microJ, 5 Hz) using a fine polished off-axis parabola having a focal length of 270 mm and coated with a Mo/Si multilayer with an initial reflectivity of 67% at 13.5 nm. The OAP was mounted and aligned with a picomotor controlled six-axis gimbal. Beam imprints on poly(methyl methacrylate) - PMMA were used to measure focus and the focused beam was used to create isochoric heating of various slab targets. Results show the focal spot has a diameter of < or =1 microm. Observations were correlated with simulations of best focus to provide further relevant information.

Evidence of anomalous resistivity for hot electron propagation through a dense fusion core in fast ignition experiments

New Journal of Physics 11 (2009)

Authors:

T Yabuuchi, A Das, GR Kumar, H Habara, PK Kaw, R Kodarna, K Mima, PA Norreys, S Sengupta, KA Tanaka

Abstract:

Anomalous resistivity for hot electrons passing through a dense core plasma is studied for fast ignition laser fusion. The hot electrons generated via the ultra-intense laser pulse and guiding cone interactions are measured after they pass through a dense plasma with a density of 50-100 g cm-3 in a radius of 15-25 m. When significant neutron enhancements are achieved by the ultraintense laser pulse injection, the energy reduction of fast electrons is observed. Also, a reduction in the number of electrons with energy up to 15 MeV can be seen. We offer a new physical mechanism for the stopping of electrons, involving electron magnetohydrodynamic shock formation in the inhomogeneous plasma density region. The dissipation in the shock region can explain electron stopping with energies of the order of 15 MeV. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Recent fast electron energy transport experiments relevant to fast ignition inertial fusion

Nuclear Fusion 49:10 (2009)

Authors:

PA Norreys, RHH Scott, KL Lancaster, JS Green, APL Robinson, M Sherlock, RG Evans, MG Haines, S Kar, M Zepf, MH Key, J King, T Ma, T Yabuuchi, MS Wei, FN Beg, P Nilson, W Theobald, RB Stephens, J Valente, JR Davies, K Takeda, H Azechi, M Nakatsutsumi, T Tanimoto, R Kodama, KA Tanaka

Abstract:

A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 1021 W cm-2. A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model. © 2009 IAEA, Vienna.

A dual-channel, curved-crystal spectrograph for petawatt laser, x-ray backlighter source studies

Review of Scientific Instruments 80:8 (2009)

Authors:

W Theobald, C Stoeckl, PA Jaanimagi, PM Nilson, M Storm, DD Meyerhofer, TC Sangster, D Hey, AJ MacKinnon, HS Park, PK Patel, R Shepherd, RA Snavely, MH Key, JA King, B Zhang, RB Stephens, KU Akli, K Highbarger, RL Daskalova, L Van Woerkom, RR Freeman, JS Green, G Gregori, K Lancaster, PA Norreys

Abstract:

A dual-channel, curved-crystal spectrograph was designed to measure time-integrated x-ray spectra in the ∼1.5 to 2 keV range (6.2-8.2 Å wavelength) from small-mass, thin-foil targets irradiated by the VULCAN petawatt laser focused up to 4× 10 20 W/ cm 2. The spectrograph consists of two cylindrically curved potassium-acid-phthalate crystals bent in the meridional plane to increase the spectral range by a factor of ∼10 compared to a flat crystal. The device acquires single-shot x-ray spectra with good signal-to-background ratios in the hard x-ray background environment of petawatt laser-plasma interactions. The peak spectral energies of the aluminum He α and Ly α resonance lines were ∼1.8 and ∼1.0 mJ/eV sr (∼0.4 and 0.25 J/Å sr), respectively, for 220 J, 10 ps laser irradiation. © 2009 American Institute of Physics.

Free-free opacity in warm dense aluminum

High Energy Density Physics 5:3 (2009) 124-131

Authors:

SM Vinko, G Gregori, MP Desjarlais, B Nagler, TJ Whitcher, RW Lee, P Audebert, JS Wark

Abstract:

We present calculations of the free-free opacity of warm, solid-density aluminum at photon energies between the plasma frequency at 15 eV and the L-edge at 73 eV, using both density functional theory combined with molecular dynamics and a semi-analytical model in the RPA framework which includes exciton contributions. As both the ion and electron temperature is increased from room temperature to 10 eV, we see a marked increase in the opacity. The effect is less pronounced if only the electron temperature is allowed to increase, while the lattice remains at room temperature. The physical significance of these increases is discussed in terms of intense light-matter interactions on both femtosecond and picosecond time scales. © 2009 Elsevier B.V. All rights reserved.