Electron Bunch Length Measurements from Laser-Accelerated Electrons Using Single-Shot THz Time-Domain Interferometry

Physical Review Letters American Physical Society (APS) 104:8 (2010) 084802

Authors:

AD Debus, M Bussmann, U Schramm, R Sauerbrey, CD Murphy, Zs Major, R Hörlein, L Veisz, K Schmid, J Schreiber, K Witte, SP Jamison, JG Gallacher, DA Jaroszynski, MC Kaluza, B Hidding, S Kiselev, R Heathcote, PS Foster, D Neely, EJ Divall, CJ Hooker, JM Smith, K Ertel, AJ Langley, P Norreys, JL Collier, S Karsch

Electron bunch length measurements from laser-accelerated electrons using single-shot thz time-domain interferometry

Physical Review Letters 104:8 (2010)

Authors:

AD Debus, M Bussmann, U Schramm, R Sauerbrey, CD Murphy, Z Major, R Hörlein, L Veisz, K Schmid, J Schreiber, K Witte, SP Jamison, JG Gallacher, DA Jaroszynski, MC Kaluza, B Hidding, S Kiselev, R Heathcote, PS Foster, D Neely, EJ Divall, CJ Hooker, JM Smith, K Ertel, AJ Langley, P Norreys, JL Collier, S Karsch

Abstract:

Laser-plasma wakefield-based electron accelerators are expected to deliver ultrashort electron bunches with unprecedented peak currents. However, their actual pulse duration has never been directly measured in a single-shot experiment. We present measurements of the ultrashort duration of such electron bunches by means of THz time-domain interferometry. With data obtained using a 0.5 J, 45 fs, 800 nm laser and a ZnTe-based electro-optical setup, we demonstrate the duration of laser-accelerated, quasimonoenergetic electron bunches [best fit of 32 fs (FWHM) with a 90% upper confidence level of 38 fs] to be shorter than the drive laser pulse, but similar to the plasma period. © 2010 The American Physical Society.

Micron-scale Fast Electron Filamentation and Recirculation determined from Rear Side Optical Emission in High Intensity Laser-Solid Interactions

(2010)

Authors:

C Bellei, SR Nagel, S Kar, A Henig, S Kneip, C Palmer, A Sävert, L Willingale, D Carroll, B Dromey, JS Green, K Markey, P Simpson, RJ Clarke, H Lowe, D Neely, C Spindloe, M Tolley, M Kaluza, SPD Mangles, P McKenna, PA Norreys, J Schreiber, M Zepf, JR Davies, K Krushelnick, Z Najmudin

The HiPER experimental road map

AIP Conference Proceedings 1209 (2010) 129-133

Authors:

D Batani, S Baton, J Badziak, J Davies, L Gizzi, L Hallo, P Norreys, M Roth, J Santos, V Tickhoncuk, N Woolsey

Abstract:

WP10 is one of the working packages of the HiPER project and it has the goal of addressing, in a systematic and programmatic way, some of the key experimental uncertainties on the way towards fast ignition (and shock ignition) in a perspective of risk reduction, so to contribute to the definition of the basic characteristics of the HiPER project. The paper describes the key points contained in the short term HiPER experimental road map, as well as the results of two first experiments performed in "HiPER dedicated time slots" in European Laser Facilities. © 2010 American Institute of Physics.

The strength of single crystal copper under uniaxial shock compression at 100 GPa.

J Phys Condens Matter 22:6 (2010) 065404

Authors:

WJ Murphy, A Higginbotham, G Kimminau, B Barbrel, EM Bringa, J Hawreliak, R Kodama, M Koenig, W McBarron, MA Meyers, B Nagler, N Ozaki, N Park, B Remington, S Rothman, SM Vinko, T Whitcher, JS Wark

Abstract:

In situ x-ray diffraction has been used to measure the shear strain (and thus strength) of single crystal copper shocked to 100 GPa pressures at strain rates over two orders of magnitude higher than those achieved previously. For shocks in the [001] direction there is a significant associated shear strain, while shocks in the [111] direction give negligible shear strain. We infer, using molecular dynamics simulations and VISAR (standing for 'velocity interferometer system for any reflector') measurements, that the strength of the material increases dramatically (to approximately 1 GPa) for these extreme strain rates.