Electronic conduction in shock-compressed water

Physics of Plasmas AIP Publishing 11:8 (2004) l41-l44

Authors:

PM Celliers, GW Collins, DG Hicks, M Koenig, E Henry, A Benuzzi-Mounaix, D Batani, DK Bradley, LB Da Silva, RJ Wallace, SJ Moon, JH Eggert, KKM Lee, LR Benedetti, R Jeanloz, I Masclet, N Dague, B Marchet, M Rabec Le Gloahec, Ch Reverdin, J Pasley, O Willi, D Neely, C Danson

Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 70:2 2 (2004)

Authors:

U Wagner, M Tatarakis, A Gopal, FN Bee, EL Clark, AE Dangor, RG Evans, MG Haines, SPD Mangles, PA Norreys, MS Wei, M Zepf, K Krushelnick

Abstract:

Measurements of ultrahigh magnetic fields produced during intense laser interaction with solids were presented. Polarization measurements of high-order laser harmonics suggest the existence of magnetic field strengths of 0.7±0.1 GG. It was found that denser regions of the plasma can be probed using higher order harmonics. The technique was found to be useful for the measurements of multi-GG level magnetic fields.

Observation of the parametric two-ion decay instability with thomson scattering.

Phys Rev Lett 93:4 (2004) 045004

Authors:

C Niemann, SH Glenzer, J Knight, L Divol, EA Williams, G Gregori, BI Cohen, C Constantin, DH Froula, DS Montgomery, RP Johnson

Abstract:

We present the first direct experimental observation of the parametric two-ion decay instability of ion-acoustic waves driven by a high intensity (5 x 10(15) W cm(-2)) laser beam in a laser produced high-Z plasma. Using two separate Thomson scattering diagnostics simultaneously, we directly measure the scattering from thermal ion-acoustic fluctuations, the primary ion waves that are driven to large amplitudes by the high intensity beam, and the two-ion decay products. The decay products are shown to be present only where the interaction takes place and their k spectrum is broad.

Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping-induced frequency shifts

Physical Review Letters 93:3 (2004)

Authors:

DH Froula, L Divol, AA Offenberger, N Meezan, T Ao, G Gregori, C Niemann, D Price, CA Smith, SH Glenzer

Abstract:

The measurement of the saturation of stimulated Brillouin scattering (SBS) by an ion-trapping-induced frequency shift was investigated. It was achieved by directly measuring the amplitude and absolute frequency of SBS-driven ion-acoustic waves (IAW). A frequency of up to 30% was observed along with a saturation of driven SBS and IAW reflectivity. The fast 30 ps oscillations of the SBS-driven IAW amplitude induced by the frequency shift were also measured.

Direct observation of the saturation of stimulated Brillouin scattering by ion-trapping-induced frequency shifts.

Phys Rev Lett 93:3 (2004) 035001

Authors:

DH Froula, L Divol, AA Offenberger, N Meezan, T Ao, G Gregori, C Niemann, D Price, CA Smith, SH Glenzer

Abstract:

We report the first measurement of the saturation of stimulated Brillouin scattering (SBS) by an ion-trapping-induced frequency shift, which was achieved by directly measuring the amplitude and absolute frequency of SBS-driven ion-acoustic waves (IAW). A frequency shift of up to 30% and a simultaneous saturation of driven IAW and SBS reflectivity were observed. The scaling of the frequency shift with the IAW amplitude compares well with theoretical calculations. We have further measured fast 30 ps oscillations of the SBS-driven IAW amplitude induced by the frequency shift.