X-ray diffraction from shocked crystals: Experiments and predictions of molecular dynamics simulations
AIP CONF PROC 706 (2004) 1195-1198
Abstract:
When a crystal is subjected to shock compression beyond its Hugoniot Elastic Limit (HEL), the deformation it undergoes is composed of elastic and plastic strain components. In situ time-dependent X-ray diffraction, which allows direct measurement of lattice spacings, can be used to investigate such phenomena. This paper presents recent experimental results of X-ray diffraction from shocked fcc crystals. Comparison is made between experimental data and simulated X-ray diffraction using a post-processor to Molecular Dynamics (MD) simulations of shocked fcc crystals.Molecular-dynamic calculation of the relaxation of the electron energy distribution function in a plasma
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 68:5 2 (2003) 564011-564018
Abstract:
A molecular-dynamic (MD) code for calculating the relaxation of an arbitrary electron energy distribution in a plasma was described. The MD approach provided a more fundamental set of equations, with fewer assumptions. The accuracy of the MD approach was proved by comparing its results with the Monte Carlo and Fokker-Planck codes using a set of plasma parameters for which the Fokker-Planck calculation gave incorrect results. Calculating energy relaxation in plasmas proved important for the understanding of the operation of new types of short-wavelength lasers based on optical field ionization.Demonstration of a collisionally excited optical-field-ionization XUV laser driven in a plasma waveguide
Physical Review Letters 91 (2003) article 205001 4 pages
Molecular-dynamic calculation of the relaxation of the electron energy distribution function in a plasma.
Phys Rev E Stat Nonlin Soft Matter Phys 68:5 Pt 2 (2003) 056401
Abstract:
A molecular-dynamic (MD) code is used to calculate the temporal evolution of nonequilibrium electron distribution functions in plasmas. To the authors' knowledge, this is the first time that a molecular-dynamic code has been used to treat this problem using a macroscopic number of particles. The code belongs to the class of P3M (particle-particle-particle-mesh) codes. Since the equations solved by the MD code are fundamental, this approach avoids several assumptions that are inherent to alternative methods. For example, the initial energy distribution can be arbitrary, and there is no need to assume a value for the Coulomb logarithm. The advantages of the MD code are illustrated by comparing its results with those of Monte Carlo and Fokker-Planck codes with a set of plasma parameters for which the Fokker-Planck calculation is shown to give incorrect results. As an example, we calculate the relaxation of the electron energy distribution produced by optical field ionization of a mixed plasma containing argon and hydrogen.Role of Plasma Science in the Studies of Planetary Fluids
IEEE International Conference on Plasma Science (2003) 316