Propagation instabilities of high-intensity laser-produced electron beams
Physical Review Letters 90:17 (2003)
Abstract:
An innovative target design was used to perform the first studies of the propagation of very high current laser-produced electron beams in a regime relevant to the fast ignition scheme. Although it appears that (Weibel) and two-stream instabilities in plasmas where the beam density was close to the background plasma density-use of cone-guided schemes for fast ignition may be able to reduce the propagation distance of the electron beam and reduce the effect of these instabilities.Basic and integrated studies for fast ignition
Physics of Plasmas 10:5 II (2003) 1925-1930
Abstract:
The process of fast ignition (FI) using various laser systems was analyzed. A Petta watt (PW) laser system was used to study the basic elements relevant to FI, which could also be injected to a compressed core. Using a spherical target inserted with a Au cone guide for the PW laser pulse, an imploded core was heated upto 1 keV resulting in neutron increase which is 1000 times more than that without heating pulse.High-pressure, high-strain-rate lattice response of shocked materials
PHYS PLASMAS 10:5 (2003) 1569-1576
Abstract:
Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the published Hugoniot Elastic Limit (HEL) for these materials. In situ x-ray diffraction has been used to directly measure the response of the shocked lattice during shock loading. Static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. In addition, experiments were conducted using a wide-angle detector to record x rays diffracted from multiple lattice planes simultaneously. These data showed uniaxial compression of Si (100) along the shock direction and three-dimensional compression of Cu (100). In the case of the Si diffraction, there was a multiple wave structure observed. This is evaluated to determine whether there is a phase transition occurring on the time scale of the experiments, or the HEL is much higher than previously reported. Results of the measurements are presented. (C) 2003 American Institute of Physics.Stimulated Brillouin scattering in the saturated regime
PHYS PLASMAS 10:5 (2003) 1846-1853
Abstract:
An experimental study of the stimulated Brillouin scattering (SBS) instability has investigated the effects of velocity gradients and kinetic effects on the saturation of ion-acoustic waves in a plasma. For intensities less than I<1.5x10(15) W cm(-2), SBS is in a linear regime and is moderated primarily by velocity gradients, while for intensities above this threshold, nonlinear trapping is relevant. Direct evidence of detuning of SBS by a velocity gradient was achieved by directly measuring the frequency of the SBS-driven acoustic wave relative to the local resonant acoustic frequency. The frequency and amplitude of the ion-acoustic wave directly responsible for SBS has been measured as a function of space using a 3omega 200 ps Thomson-scattering probe beam. Furthermore, direct evidence of kinetic effects associated with the SBS process in the nonlinear regime has been investigated through a novel use of Thomson scattering. Specifically, a measured twofold increase in the ion temperature has been linked with ion-acoustic waves that have been driven to large amplitudes by the SBS instability. Ion-acoustic waves were excited to large amplitude with a 2omega 1.2-ns-long interaction beam with intensities up to 7x10(15) W cm(-2). The measured twofold increase in the ion temperature and its correlation with SBS reflectivity measurements provides quantitative evidence of hot ions created by ion trapping in laser plasmas. These detailed and accurate measurements in well-characterized plasma conditions allow a direct test of linear and nonlinear models of the saturation of SBS. (C) 2003 American Institute of Physics.Propagation Instabilities of High-Intensity Laser-Produced Electron Beams
Physical Review Letters American Physical Society (APS) 90:17 (2003) 175001