Towards a quantum fluid theory of correlated many-fermion systems from first principles

SciPost Physics SciPost 12:2 (2022) 062

Authors:

Zhandos Moldabekov, T Dornheim, Gianluca Gregori

Abstract:

Correlated many-fermion systems emerge in a broad range of phenomena in warm dense matter, plasmonics, and ultracold atoms. Quantum hydrodynamics (QHD) complements first-principles methods for many-fermion systems at larger scales. We illustrate the failure of the standard Bohm potential central to QHD for strong perturbations when the density perturbation is larger than about 10−3 of the mean density. We then extend QHD to this regime via the \emph{many-fermion Bohm potential} from first-principles. This may lead to more accurate QHD simulations beyond their common application domain in the presence of strong perturbations at scales unattainable with first-principles methods.

Efficient generation of new orbital angular momentum beams by backward and forward stimulated Raman scattering

(2022)

Authors:

QS Feng, R Aboushelbaya, MW Mayr, WP Wang, RMGM Trines, BT Spiers, RW Paddock, I Ouatu, R Timmis, RHW Wang, R Bingham, PA Norreys

European Strategy for Particle Physics -- Accelerator R&D Roadmap

(2022)

Authors:

C Adolphsen, D Angal-Kalinin, T Arndt, M Arnold, R Assmann, B Auchmann, K Aulenbacher, A Ballarino, B Baudouy, P Baudrenghien, M Benedikt, S Bentvelsen, A Blondel, A Bogacz, F Bossi, L Bottura, S Bousson, O Brüning, R Brinkmann, M Bruker, O Brunner, PN Burrows, G Burt, S Calatroni, K Cassou, A Castilla, N Catalan-Lasheras, E Cenni, A Chancé, N Colino, S Corde, L Corner, B Cros, A Cross, JP Delahaye, G Devanz, A-I Etienvre, P Evtushenko, A Faus-Golfe, P Fazilleau, M Ferrario, A Gallo, L García-Tabarés, C Geddes, F Gerigk, F Gianotti, S Gilardoni, A Grudiev, E Gschwendtner, G Hoffstaetter, M Hogan, S Hooker, A Hutton, R Ischebeck, K Jakobs, P Janot, E Jensen, J Kühn, W Kaabi, D Kayran, M Klein, J Knobloch, M Koratzinos, B Kuske, M Lamont, A Latina, P Lebrun, W Leemans, D Li, K Long, D Longuevergne, R Losito, W Lu, D Lucchesi, O Lundh, E Métral, F Marhauser, S Michizono, B Militsyn, J Mnich, E Montesinos, N Mounet, P Muggli, P Musumeci, S Nagaitsev, T Nakada, A Neumann, D Newbold, P Nghiem, M Noe, K Oide, J Osterhoff, M Palmer, N Pastrone, N Pietralla, S Prestemon, E Previtali, T Proslier, L Quettier, T Raubenheimer, B Rimmer, L Rivkin, E Rochepault, C Rogers, G Rosaz, T Roser, L Rossi, R Ruber, D Schulte, M Seidel, C Senatore, B Shepherd, J Shi, N Shipman, A Specka, S Stapnes, A Stocchi, D Stratakis, I Syratchev, O Tanaka, S Tantawi, C Tennant, E Tsesmelis, C Vaccarezza, A-M Valente, P Védrine, J Vieira, N Vinokurov, H Weise, M Wenskat, P Williams, M Wing, A Yamamoto, Y Yamamoto, K Yokoya, F Zimmermann

Demonstration of kilohertz operation of Hydrodynamic Optical-Field-Ionized Plasma Channels

Physical Review Accelerators and Beams American Physical Society (2022)

Authors:

A Alejo, J Cowley, A Picksley, R Walczak, SM Hooker

Abstract:

We demonstrate experimentally that hydrodynamic optical-field-ionized (HOFI) plasma channels can be generated at kHz-scale pulse repetition rates, in a static gas cell and for an extended period. Using a pump-probe arrangement, we show via transverse interferometry that the properties of two HOFI channels generated \SI{1}{ms} apart are essentially the same. We demonstrate that HOFI channels can be generated at a mean repetition rate of \SI{0.4}{kHz} for a period of 6.5 hours without degradation of the channel properties, and we determine the fluctuations in the key optical parameters of the channels in this period. Our results suggest that HOFI and conditioned HOFI channels are well suited for future high-repetition rate, multi-GeV plasma accelerator stages.

Multi-group radiation diffusion convergence in low-density foam experiments

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier 280 (2022) 108070

Authors:

Kw McLean, Steven Rose

Abstract:

We present an in-depth analysis of a Marshak radiation wave moving through an iron-oxide (Fe2O3) foam using a 1D multigroup diffusive radiation transport model, MDART (Multigroup Diffusion Algorithm for Radiation Transport). We consider the consequences of under-resolving the group structure and address how this could lead to incorrect conclusions in the analysis of general supersonic radiation wave experiments. We also provide an analysis of the types of experimental outcome one may incorrectly link to physical effects but are in fact due to poor simulation practice.