Stability of the modulator in a plasma-modulated plasma accelerator
Physical Review E American Physical Society 108:1 (2023) 15204
Abstract:
We explore the regime of operation of the modulator stage of a recently proposed laser-plasma accelerator scheme [Phys. Rev. Lett. 127, 184801 (2021)], dubbed the plasma-modulated plasma accelerator (P-MoPA). The P-MoPA scheme offers a potential route to high-repetition-rate, GeV-scale plasma accelerators driven by picosecond-duration laser pulses from, for example, kilohertz thin-disk lasers. The first stage of the P-MoPA scheme is a plasma modulator in which a long, high-energy “drive” pulse is spectrally modulated by copropagating in a plasma channel with the low-amplitude plasma wave driven by a short, low-energy “seed” pulse. The spectrally modulated drive pulse is converted to a train of short pulses, by introducing dispersion, which can resonantly drive a large wakefield in a subsequent accelerator stage with the same on-axis plasma density as the modulator. In this paper we derive the 3D analytic theory for the evolution of the drive pulse in the plasma modulator and show that the spectral modulation is independent of transverse coordinate, which is ideal for compression into a pulse train. We then identify a transverse mode instability (TMI), similar to the TMI observed in optical fiber lasers, which sets limits on the energy of the drive pulse for a given set of laser-plasma parameters. We compare this analytic theory with particle-in-cell (PIC) simulations and find that even higher energy drive pulses can be modulated than those demonstrated in the original proposal.Searching for wave-like dark matter with QSHS
SciPost Physics Proceedings SciPost 12 (2023)
Abstract:
In 2021 the Quantum Sensors for the Hidden Sector (QSHS) collaboration was founded in the UK and received funding to develop and demonstrate quantum devices with the potential to detect hidden sector particles in the μeV to 100 μeV mass window. The collaboration has been developing a range of devices. It is building a high-field, low-temperature facility at the University of Sheffield to characterise and test the devices in a haloscope geometry. This paper introduces the collaboration's motivation, aims, and progress.Simulations of collisional effects in an inner-shell solid-density mg x-ray laser
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society 381 (2023) 20220218
Abstract:
Inner-shell Kα x-ray lasers have been created by pumping gaseous, solid, and liquid targets with the intense x-ray output of free-electron-lasers (FELs). For gaseous targets lasing relies on the creation of K-shell core-holes on a time-scale short compared with filling via Auger decay. In the case of solid and liquid density systems, collisional effects will also be important, affecting not only populations, but also line-widths, both of which impact the degree of overall gain, and its duration. However, to date such collisional effects have not been extensively studied. We present here initial simulations using the CCFLY code of inner-shell lasing in solid density Mg, where we self-consistently treat the effects of the incoming FEL radiation and the atomic kinetics of the Mg system, including radiative, Auger, and collisional effects. We find that the combination of collisional population of the lower states of the lasing transitions and broadening of the lines precludes lasing on all but the Kα of the initially cold system. Even assuming instantaneous turning on of the FEL pump, we find the duration of the gain in the solid system to be sub-femtosecond.Development of a new quantum trajectory molecular dynamics framework
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society 381 (2023) 20220325
Abstract:
An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalised Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared to other models.Measurement of the decay of laser-driven linear plasma wakefields
(2023)