Neutrino-electron magnetohydrodynamics in an expanding Universe
(2021)
Atomistic deformation mechanism of silicon under laser-driven shock compression
(2021)
An investigation of efficient muon production for use in muon catalyzed fusion
Journal of Physics: Energy IOP Publishing 3:3 (2021) 035003-035003
The data-driven future of high energy density physics
Nature Springer Nature 593 (2021) 351-361
Abstract:
High-energy-density physics is the field of physics concerned with studying matter at extremely high temperatures and densities. Such conditions produce highly nonlinear plasmas, in which several phenomena that can normally be treated independently of one another become strongly coupled. The study of these plasmas is important for our understanding of astrophysics, nuclear fusion and fundamental physics—however, the nonlinearities and strong couplings present in these extreme physical systems makes them very difficult to understand theoretically or to optimize experimentally. Here we argue that machine learning models and data-driven methods are in the process of reshaping our exploration of these extreme systems that have hitherto proved far too nonlinear for human researchers. From a fundamental perspective, our understanding can be improved by the way in which machine learning models can rapidly discover complex interactions in large datasets. From a practical point of view, the newest generation of extreme physics facilities can perform experiments multiple times a second (as opposed to approximately daily), thus moving away from human-based control towards automatic control based on real-time interpretation of diagnostic data and updates of the physics model. To make the most of these emerging opportunities, we suggest proposals for the community in terms of research design, training, best practice and support for synthetic diagnostics and data analysis.Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas
(2021)