Whole-beam self-focusing in fusion-relevant plasma
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Royal Society 379:2189 (2020) 20200159
Abstract:
Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-compressed fusion fuel. We present a systematic characterisation of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in fullscale particle-in-cell simulations. We present observations of long lived, straight channels produced by the Habara-Kodama-Tanaka (HKT) wholebeam self-focusing mechanism, overcoming a critical barrier on the path to realising fast ignition.First demonstration of ARC-accelerated proton beams at the National Ignition Facility (vol 26, 043110, 2019)
PHYSICS OF PLASMAS 27:12 (2020) ARTN 129901
Abstract:
© 2020 Author(s). In the original paper,1 two coauthors, M. Gatu Johnson and B. Lahmann, were erroneously omitted from the author list. The corrected author list is identical to that of this erratum, and repeated below for clarity.Kinematics of slip-induced rotation for uniaxial shock or ramp compression
(2020)
A novel method to measure ion density in ICF experiments using X-ray spectroscopy of cylindrical tracers
Physics of Plasmas AIP Publishing 27:2020 (2020) 112714
Abstract:
The indirect drive approach to inertial confinement fusion (ICF) has undergone important advances in the past years. The improvements in temperature and density diagnostic methods are leading to more accurate measurements of the plasma conditions inside the hohlraum and therefore to more efficient experimental designs. The implementation of dot spectroscopy has proven to be a versatile approach to extracting spaceand time-dependent electron temperatures. In this method a microdot of a mid-Z material is placed inside the hohlraum and its K-shell emission spectrum is used to determine the plasma temperature. However, radiation transport of optically thick lines acting within the cylindrical dot geometry influences the outgoing spectral distribution in a manner that depends on the viewing angle. This angular dependence has recently been studied in the high energy density (HED) regime at the OMEGA laser facility, which allowed us to design and benchmark appropriate radiative transfer models that can replicate these geometric effects. By combining these models with the measurements from the dot spectroscopy experiments at the National Ignition Facility (NIF), we demonstrate here a novel technique that exploits the transport effects to obtain time-resolved measurements of the ion density of the tracer dots, without the need for additional diagnostics. We find excellent agreement between experiment and simulation, opening the possibility of using these geometric effects as a density diagnostic in future experiments.X-ray spectroscopic studies of a solid-density germanium plasma created by a free electron laser
Applied Sciences MDPI 10:22 (2020) 8153