Time-resolved turbulent dynamo in a laser plasma

Proceedings of the National Academy of Sciences National Academy of Sciences 118:11 (2021) e2015729118

Authors:

Afa Bott, P Tzeferacos, L Chen, Charlotte Palmer, A Rigby, Anthony Bell, R Bingham, A Birkel, C Graziani, Dh Froula, J Katz, M Koenig, Mw Kunz, Ck Li, J Meinecke, Francesco Miniati, R Petrasso, H-S Park, Ba Remington, B Reville, Js Ross, D Ryu, D Ryutov, F Séguin, Tg White, AA Schekochihin, Dq Lamb, G Gregori

Abstract:

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas (Pm<1). However, the same framework proposes that the fluctuation dynamo should operate differently when Pm≳1, the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory Pm≳1 plasma dynamo. We provide a time-resolved characterization of the plasma’s evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo’s operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

Towards a Quantum Fluid Theory of Correlated Many-Fermion Systems from First Principles

(2021)

Authors:

Zh A Moldabekov, T Dornheim, G Gregori, F Graziani, M Bonitz, A Cangi

High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser (vol 92, 013101, 2021)

REVIEW OF SCIENTIFIC INSTRUMENTS 92:3 (2021) ARTN 039901

Authors:

L Wollenweber, TR Preston, A Descamps, V Cerantola, A Comley, JH Eggert, LB Fletcher, G Geloni, DO Gericke, SH Glenzer, S Goede, J Hastings, OS Humphries, A Jenei, O Karnbach, Z Konopkova, R Loetzsch, B Marx-Glowna, EE McBride, D McGonegle, G Monaco, BK Ofori-Okai, CAJ Palmer, C Plueckthun, R Redmer, C Strohm, I Thorpe, T Tschentscher, I Uschmann, JS Wark, TG White, K Appel, G Gregori, U Zastrau

High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the European X-Ray Free-Electron Laser (vol 92, 013101, 2021)

REVIEW OF SCIENTIFIC INSTRUMENTS 92:3 (2021) 39901

Authors:

L Wollenweber, Tr Preston, A Descamps, V Cerantola, A Comley, Jh Eggert, Lb Fletcher, G Geloni, Do Gericke, Sh Glenzer, S Goede, J Hastings, Os Humphries, A Jenei, O Karnbach, Z Konopkova, R Loetzsch, B Marx-Glowna, Ee McBride, D McGonegle, G Monaco, Bk Ofori-Okai, Caj Palmer, C Plueckthun, R Redmer, C Strohm, I Thorpe, T Tschentscher, I Uschmann, Js Wark, Tg White, K Appel, G Gregori, U Zastrau

Kinematics of slip-induced rotation for uniaxial shock or ramp compression

Journal of Applied Physics AIP Publishing 129:8 (2021) 085109

Authors:

Patrick Heighway, Justin Wark

Abstract:

When a metallic specimen is plastically deformed, its underlying crystal structure must often rotate in order to comply with its macroscopic boundary conditions. There is growing interest within the dynamic compression community in exploiting x-ray diffraction measurements of lattice rotation to infer which combinations of plasticity mechanisms are operative in uniaxially shock- or ramp-compressed crystals, thus informing materials science at the greatest extremes of pressure and strain rate. However, it is not widely appreciated that several of the existing models linking rotation to slip activity are fundamentally inapplicable to a planar compression scenario. We present molecular dynamics simulations of single crystals suffering true uniaxial strain, and show that the Schmid and Taylor analyses used in traditional materials science fail to predict the ensuing lattice rotation. We propose a simple alternative framework based on the elastoplastic decomposition that successfully recovers the observed rotation for these single crystals, and can further be used to identify the operative slip systems and the amount of activity upon them in the idealized cases of single and double slip.