Nonlinear wakefields and electron injection in cluster plasma

Physical Review Accelerators and Beams American Physical Society 23 (2020) 093501

Authors:

Marko Mayr, Benjamin Spiers, Ramy Aboushelbaya, Robert Paddock, James Sadler, Charles Sillett, Robin Wang, Karl Krushelnick, Peter Norreys

Abstract:

Laser and beam driven wakefields promise orders of magnitude increases in electric field gradients for particle accelerators for future applications. Key areas to explore include the emittance properties of the generated beams and overcoming the dephasing limit in the plasma. In this paper, the first in-depth study of the self-injection mechanism into wakefield structures from nonhomogeneous cluster plasmas is provided using high-resolution two dimensional particle-in-cell simulations. The clusters which are typical structures caused by ejection of gases from a high-pressure gas jet have a diameter much smaller than the laser wavelength. Conclusive evidence is provided for the underlying mechanism that leads to particle trapping, comparing uniform and cluster plasma cases. The accelerated electron beam properties are found to be tunable by changing the cluster parameters. The mechanism explains enhanced beam charge paired with large transverse momentum and energy which has implications for the betatron x-ray flux. Finally, the impact of clusters on the high-power laser propagation behavior is discussed.

Meter-Scale, Conditioned Hydrodynamic Optical-Field-Ionized Plasma Channels

(2020)

Authors:

A Picksley, A Alejo, RJ Shalloo, C Arran, A von Boetticher, L Corner, JA Holloway, J Jonnerby, O Jakobsson, C Thornton, R Walczak, SM Hooker

Inefficient magnetic-field amplification in supersonic laser-plasma turbulence

(2020)

Authors:

AFA Bott, L Chen, G Boutoux, T Caillaud, A Duval, M Koenig, B Khiar, I Lantuéjoul, L Le-Deroff, B Reville, R Rosch, D Ryu, C Spindloe, B Vauzour, B Villette, AA Schekochihin, DQ Lamb, P Tzeferacos, G Gregori, A Casner

Investigating off-Hugoniot states using multi-layer ring-up targets

Scientific Reports Springer Nature 10:1 (2020) 13172

Authors:

D McGonegle, Pg Heighway, M Sliwa, Ca Bolme, Aj Comley, Le Dresselhaus-Marais, A Higginbotham, Aj Poole, Ee McBride, B Nagler, I Nam, Mh Seaberg, Ba Remington, Re Rudd, Ce Wehrenberg, Js Wark

Abstract:

Laser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer ‘ring-up’ target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot. We find that the efficiency of this approach compares favourably with the commonly used diamond sandwich technique and could be important for new facilities located at XFELs and synchrotrons which often have higher repetition rate, lower energy lasers which limits the achievable pressures that can be reached.

Time-resolved fast turbulent dynamo in a laser plasma

(2020)

Authors:

AFA Bott, P Tzeferacos, L Chen, CAJ Palmer, A Rigby, A Bell, R Bingham, A Birkel, C Graziani, DH Froula, J Katz, M Koenig, MW Kunz, CK Li, J Meinecke, F Miniati, R Petrasso, H-S Park, BA Remington, B Reville, JS Ross, D Ryu, D Ryutov, F Séguin, TG White, AA Schekochihin, DQ Lamb, G Gregori