Nonlinear wakefields and electron injection in cluster plasma
(2020)
Recovery of a high-pressure phase formed under laser-driven compression
Physical Review B American Physical Society 102:2 (2020) 24101
Abstract:
The recovery of metastable structures formed at high pressure has been a long-standing goal in the field of condensed matter physics. While laser-driven compression has been used as a method to generate novel structures at high pressure, to date no high-pressure phases have been quenched to ambient conditions. Here we demonstrate, using in situ x-ray diffraction and recovery methods, the successful quench of a high-pressure phase which was formed under laser-driven shock compression. We show that tailoring the pressure release path from a shock-compressed state to eliminate sample spall, and therefore excess heating, increases the recovery yield of the high-pressure ω phase of zirconium from 0% to 48%. Our results have important implications for the quenchability of novel phases of matter demonstrated to occur at extreme pressures using nanosecond laser-driven compression.Recovery of a high-pressure phase formed under laser-driven compression
Physical Review B American Physical Society (APS) 102:2 (2020) 24101
Numerical modelling of chromatic effects on axicon-focused beams used to generate HOFI plasma channels
Journal of Physics: Conference Series IOP Publishing 1596 (2020)
Abstract:
Hydrodynamic optical-field-ionised (HOFI) plasma channels promise a route towards high repetition-rate, metre-scale stages for future laser plasma accelerators. These channels are formed by hydrodynamic expansion of a plasma column produced by optical field ionisation at the focus of a laser, typically from an axicon lens. Since the laser pulses used to generate the initial plasma column are of sub-picosecond duration, chromatic effects in the axicon lens could be important. In this paper we assess these effects using a numerical propagation code. The code is validated using analytical formulae and experimental data. For the parameter range investigated, dispersive effects are found to be of minor importance, reducing the peak on-axis intensity in the focal region by approximately 10%.Electron acceleration in laboratory-produced turbulent collisionless shocks
Nature Physics Springer Nature 16 (2020) 916-920