Collisionless shock acceleration in the corona of an inertial confinement fusion pellet with possible application to ion fast ignition
(2020)
Meter-scale conditioned hydrodynamic optical-field-ionized plasma channels
Physical Review E American Physical Society (APS) 102:5 (2020) 53201
Abstract:
We demonstrate through experiments and numerical simulations that low-density, low-loss, meter-scale plasma channels can be generated by employing a conditioning laser pulse to ionize the neutral gas collar surrounding a hydrodynamic optical-field-ionized (HOFI) plasma channel. We use particle-in-cell simulations to show that the leading edge of the conditioning pulse ionizes the neutral gas collar to generate a deep, low-loss plasma channel which guides the bulk of the conditioning pulse itself as well as any subsequently injected pulses. In proof-of-principle experiments we generate conditioned HOFI (CHOFI) waveguides with axial electron densities of $n_\mathrm{e0} \approx 1 \times 10^{17} \; \mathrm{cm^{-3}}$, and a matched spot size of $26 \; \mathrm{\mu m}$. The power attenuation length of these CHOFI channels is $L_\mathrm{att} = (21 \pm 3) \; \mathrm{m}$, more than two orders of magnitude longer than achieved by HOFI channels. Hydrodynamic and particle-in-cell simulations demonstrate that meter-scale CHOFI waveguides with attenuation lengths exceeding 1 m could be generated with a total laser pulse energy of only $1.2$ J per meter of channel. The properties of CHOFI channels are ideally suited to many applications in high-intensity light-matter interactions, including multi-GeV plasma accelerator stages operating at high pulse repetition rates.Observations of Pressure Anisotropy Effects within Semi-Collisional Magnetized-Plasma Bubbles
(2020)
Generation of photoionized plasmas in the laboratory: Analogues to astrophysical sources
Proceedings of the International Astronomical Union Cambridge University Press (CUP) 15:S350 (2020) 321-325
Abstract:
Implementation of a novel experimental approach using a bright source of narrowband X-ray emission has enabled the production of a photoionized argon plasma of relevance to astrophysical modelling codes such as Cloudy. We present results showing that the photoionization parameter ζ = 4ÏF/ne generated using the VULCAN laser was ≈ 50 erg cm s-1, higher than those obtained previously with more powerful facilities. Comparison of our argon emission-line spectra in the 4.15-4.25 Å range at varying initial gas pressures with predictions from the Cloudy code and a simple time-dependent code are also presented. Finally we briefly discuss how this proof-of-principle experiment may be scaled to larger facilities such as ORION to produce the closest laboratory analogue to a photoionized plasma.Modelling burning thermonuclear plasma
Philosophical Transactions A: Mathematical, Physical and Engineering Sciences Royal Society 378:2184 (2020) 20200014