Diffuse scattering from dynamically compressed single-crystal zirconium following the pressure-induced αω phase transition

Physical Review B American Physical Society (APS) 110:5 (2024) 054113

Authors:

PG Heighway, S Singh, MG Gorman, D McGonegle, JH Eggert, RF Smith

Abstract:

The prototypical αω phase transition in zirconium is an ideal test bed for our understanding of polymorphism under extreme loading conditions. After half a century of study, a consensus had emerged that the transition is realized via one of two distinct displacive mechanisms, depending on the nature of the compression path. However, recent dynamic-compression experiments equipped with diffraction diagnostics performed in the past few years have revealed new transition mechanisms, demonstrating that our understanding of the underlying atomistic dynamics and transition kinetics is in fact far from complete. We present classical molecular dynamics simulations of the αω phase transition in single-crystal zirconium shock compressed along the [0001] axis using a machine-learning-class potential. The transition is predicted to proceed primarily via a modified version of the two-stage Usikov-Zilberstein mechanism, whereby the high-pressure ω phase heterogeneously nucleates at boundaries between grains of an intermediate β phase. We further observe the fomentation of atomistic disorder at the junctions between β grains, leading to the formation of highly defective interstitial material between the ω grains. We directly compare synthetic x-ray diffraction patterns generated from our simulations with those obtained using femtosecond diffraction in recent dynamic-compression experiments, and show that the simulations produce the same unique, anisotropic diffuse scattering signal unlike any previously seen from an elemental metal. Our simulations suggest that the diffuse signal arises from a combination of thermal diffuse scattering, nanoparticlelike scattering from residual kinetically stabilized α and β grains, and scattering from interstitial defective structures. Published by the American Physical Society 2024

Exploring relaxation dynamics in warm dense plasmas by tailoring non-thermal electron distributions with a free electron laser

Physics of Plasmas AIP Publishing 31:8 (2024) 082305

Authors:

YuanFeng Shi, Shenyuan Ren, Hyun-kyung Chung, Justin Wark, Sam Vinko

Abstract:

Knowing the characteristic relaxation time of free electrons in a dense plasma is crucial to our understanding of plasma equilibration and transport. However, experimental investigations of electron relaxation dynamics have been hindered by the ultrafast, sub-femtosecond timescales on which these interactions typically take place. Here, we propose a novel approach that uses x rays from a free electron laser to generate well-defined non-thermal electron distributions, which can then be tracked via emission spectroscopy from radiative recombination as they thermalize. Collisional radiative simulations reveal how this method can enable the measurement of electron relaxation timescales in situ, shedding light on the applicability and accuracy of the Coulomb logarithm framework for modeling collisions in dense plasmas.

Gravitational waves from high-power twisted light

Physical Review D American Physical Society 110 (2024) 044023

Authors:

Eduard Atonga, Killian Martineau, Ramy Aboushelbaya, Marko von der Leyen, Sunny Howard, Jordan Lee, Heath Martin, Iustin Ouatu, Robert Paddock, Rusko Ruskov, Robin Timmis, Peter Norreys

Abstract:

Recent advances in high-energy and high-peak-power laser systems have opened up new possibilities for fundamental physics research. In this work, the potential of twisted light for the generation of gravitational waves in the high frequency regime is explored for the first time. Focusing on Bessel beams, novel analytic expressions and numerical computations for the generated metric perturbations and associated powers are presented. The gravitational peak intensity is shown to reach 1.44 × 10−5 W.m−2 close to the source, and 1.01 × 10−19 W.m−2 ten meters away. Compelling evidence is provided that the properties of the generated gravitational waves, such as frequency, polarisation states and direction of emission, are controllable by the laser pulse parameters and optical arrangements.

A molecular dynamics framework coupled with smoothed particle hydrodynamics for quantum plasma simulations

(2024)

Authors:

Thomas Campbell, Pontus Svensson, Brett Larder, Daniel Plummer, Sam M Vinko, Gianluca Gregori

Ionic structure, Liquid-liquid phase transitions, X-Ray diffraction, and X-Ray Thomson scattering in shock compressed liquid Silicon in the 100-200 GPa regime

(2024)

Authors:

MWC Dharma-wardana, Dennis D Klug, Hannah Poole, G Gregori