Contribution of ALEGRO to the Update of the European Strategy on Particle Physics
(2025)
Modeling of warm dense hydrogen via explicit real-time electron dynamics: Electron transport properties
Physical Review E American Physical Society (APS) 111:4 (2025) 045208
Collisional whistler instability and electron temperature staircase in inhomogeneous plasma
Journal of Plasma Physics Cambridge University Press (CUP) 91:2 (2025) E45
Abstract:
<jats:p>High-beta magnetised plasmas often exhibit anomalously structured temperature profiles, as seen from galaxy cluster observations and recent experiments. It is well known that when such plasmas are collisionless, temperature gradients along the magnetic field can excite whistler waves that efficiently scatter electrons to limit their heat transport. Only recently has it been shown that parallel temperature gradients can excite whistler waves also in collisional plasmas. Here, we develop a Wigner–Moyal theory for the collisional whistler instability starting from Braginskii-like fluid equations in a slab geometry. This formalism is necessary because, for a large region in parameter space, the fastest-growing whistler waves have wavelengths comparable to the background temperature gradients. We find additional damping terms in the expression for the instability growth rate involving inhomogeneous Nernst advection and resistivity. They (i) enable whistler waves to re-arrange the electron temperature profile via growth, propagation and subsequent dissipation, and (ii) allow non-constant temperature profiles to exist stably. For high-beta plasmas, the marginally stable solutions take the form of a temperature staircase along the magnetic field lines. The electron heat flux can also be suppressed by the Ettingshausen effect when the whistler intensity profile is sufficiently peaked and oriented opposite the background temperature gradient. This mechanism allows cold fronts without magnetic draping, might reduce parallel heat losses in inertial fusion experiments and generally demonstrates that whistler waves can regulate transport even in the collisional limit.</jats:p>On the localization of the high-intensity region of simultaneous space-time foci
Optics Express Optica Publishing Group 33:4 (2025) 7645-7645
Abstract:
<jats:p>Simultaneous space-time focusing (SSTF) is sometimes claimed to reduce the longitudinal extent of the high-intensity region near the focus, in contradiction to the original work on this topic. Here we seek to address this confusion by using numerical and analytical methods to investigate the degree of localization of the spatio-temporal intensity of an SSTF pulse. The analytical method is found to be in excellent agreement with numerical calculations and yields, for bi-Gaussian input pulses, expressions for the three-dimensional spatio-temporal intensity profile of the SSTF pulse, and for the on-axis bandwidth, pulse duration, and pulse-front tilt (PFT) of the SSTF pulse. To provide further insight, we propose a method for determining the transverse input profile of a non-SSTF pulse with equivalent spatial focusing. We find that the longitudinal variations of the peak axial intensities of the SSTF and spatially equivalent (SE) pulses are the same, apart from a constant factor, and hence that SSTF does not constrain the region of high intensity more than a non-SSTF pulse with equivalent focusing. We demonstrate that a simplistic method for calculating the pulse intensity exaggerates the degree of intensity localization, unless the spatio-temporal couplings inherent to SSTF pulses are accounted for.</jats:p>Bounds on Heavy Axions with an X-Ray Free Electron Laser
Physical Review Letters American Physical Society (APS) 134:5 (2025) 55001