Evolution of the design and fabrication of astrophysics targets for Turbulent Dynamo (TDYNO) experiments on OMEGA

Fusion Science and Technology Taylor and Francis 73:3 (2017) 434-445

Authors:

SA Muller, DN Kaczala, HM Abu-Shawareb, EL Alfonso, LC Carlson, M Mauldin, P Fitzsimmons, D Lamb, P Tzeferacos, Laura E Chen, Gianluca Gregori, Alexandra Rigby, Archie Bott, TG White, D Froula, J Katz

Abstract:

Highly complex targets are constructed by General Atomics for astrophysically relevant experiments conducted by the University of Chicago on the OMEGA laser facility through the National Laser Users’ Facility (NLUF) program.

Several novel target components are fabricated, precision assembled, and extensively measured in support of this campaign and have evolved over the last 3 years to improve both the science and assembly. Examples include unique laser-machined polyimide grids to enhance plasma mixing at the target center, precision-micromachined cylindrical shields that also act as component spacers, drawn glass target supports to suspend physics packages at critical distances, and tilted pinholes for collimated proton radiography.

Target component fabrication and evolution details for the NLUF Turbulent Dynamo (TDYNO) campaign are presented, along with precision-assembly techniques, metrology methods, and considerations for future TDYNO experiments on OMEGA.

Magneto-optic probe measurements in low density-supersonic jets

Journal of Instrumentation IOP Publishing 12:December (2017) P12001

Authors:

Matthew Oliver, T White, P Mabey, M Kuhn-Kauffeldt, L Dohl, R Bingham, R Clarke, P Graham, R Heathcote, M Koenig, Y Kuramitsu, DQ Lamb, J Meinecke, T Michel, F Miniati, M Notley, B Reville, S Sarkar, Y Sakawa, A Schekochihin, P Tzeferacos, N Woolsey, Gianluca Gregori

Abstract:

A magneto-optic probe was used to make time-resolved measurements of the magnetic field in both a single supersonic jet and in a collision between two supersonic turbulent jets, with an electron density ⇡ 1018 cm3 and electron temperature ⇡ 4 eV. The magneto-optic data indicated the magnetic field reaches B ⇡ 200 G. The measured values are compared against those obtained with a magnetic induction probe. Good agreement of the time-dependent magnetic field measured using the two techniques is found.

AWAKE readiness for the study of the seeded self-modulation of a 400GeV proton bunch

PLASMA PHYSICS AND CONTROLLED FUSION 60:1 (2017) ARTN 014046

Authors:

P Muggli, E Adli, R Apsimon, F Asmus, R Baartman, A-M Bachmann, MB Marin, F Batsch, J Bauche, VKB Olsen, M Bernardini, B Biskup, EB Vinuela, A Boccardi, T Bogey, T Bohl, C Bracco, F Braunmuller, S Burger, G Burt, S Bustamante, B Buttenschoen, A Butterworth, A Caldwell, M Cascella, E Chevallay, M Chung, H Damerau, L Deacon, A Dexter, P Dirksen, S Doebert, J Farmer, V Fedosseev, T Feniet, G Fior, R Fiorito, R Fonseca, F Friebel, P Gander, S Gessner, I Gorgisyan, AA Gorn, O Grulke, E Gschwendtner, A Guerrero, J Hansen, C Hessler, W Hofle, J Holloway, M Huther, M Ibison, MR Islam, L Jensen, S Jolly, M Kasim, F Keeble, S-Y Kim, F Kraus, A Lasheen, T Lefevre, G LeGodec, Y Li, S Liu, N Lopes, KV Lotov, M Martyanov, S Mazzoni, DM Godoy, O Mete, VA Minakov, R Mompo, J Moody, MT Moreira, J Mitchell, C Mutin, P Norreys, E Oz, E Ozturk, W Pauw, A Pardons, C Pasquino, K Pepitone, A Petrenko, S Pitmann, G Plyushchev, A Pukhov, K Rieger, H Ruhl, J Schmidt, IA Shalimova, E Shaposhnikova, P Sherwood, L Silva, AP Sosedkin, R Speroni, RI Spitsyn, K Szczurek, J Thomas, PV Tuev, M Turner, V Verzilov, J Vieira, H Vincke, CP Welsch, B Williamson, M Wing, G Xia, H Zhang, AWAKE Collaboration

X-ray line coincidence photopumping in a solar flare

Monthly Notices of the Royal Astronomical Society Oxford University Press 474:3 (2017) 3782-3786

Authors:

FP Keenan, K Poppenhaeger, M Mathioudakis, Steven Rose, J Flowerdew, D Hynes, DJ Christian, J Nilsen, WR Johnson

Abstract:

Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources.

Attosecond-scale absorption at extreme intensities

Physics of Plasmas AIP Publishing 24:11 (2017) 113103

Authors:

AF Savin, AJ Ross, M Serzans, RMGM Trines, L Ceurvorst, N Ratan, B Spiers, R Bingham, APL Robinson, Peter Norreys

Abstract:

A novel non-ponderomotive absorption mechanism, originally presented by Baeva et al. [Phys. Plasmas 18, 056702 (2011)] in one dimension, is extended into higher dimensions for the first time. This absorption mechanism, the Zero Vector Potential (ZVP), is expected to dominate the interactions of ultra-intense laser pulses with critically over-dense plasmas such as those that are expected with the Extreme Light Infrastructure laser systems. It is shown that the mathematical form of the ZVP mechanism and its key scaling relations found by Baeva et al. in 1D are identically reproduced in higher dimensions. The two dimensional particle-in-cell simulations are then used to validate both the qualitative and quantitative predictions of the theory.