Inverse Problem Instabilities in Large-Scale Plasma Modelling

(2018)

Authors:

MF Kasim, TP Galligan, J Topp-Mugglestone, G Gregori, SM Vinko

Reply to ‘Thomson scattering in inhomogeneous plasmas: The Role of the Fluctuation-Dissipation Theorem’

Scientific Reports Nature Publishing Group 8 (2018) Article number 7947

Authors:

PM Kozlowski, Gianluca Gregori

Abstract:

In a comment on our article “Theory of Thomson scattering in inhomogeneous media”, V. V. Belyi asserts that there is an inconsistency in our method of applying gradient effects via the dielectric superposition principle, in violation of the fluctuation-dissipation theorem; and that his Klimontovich-Langevin formulation would be more appropriate to our application. While we agree that a generalization, along the lines of Belyi’s work, would be required for strongly coupled systems, for the weakly coupled systems which we considered, these corrections are not necessary and our approach is still appropriate.

Advantages to a diverging Raman amplifier

Communications Physics Nature Publishing Group 1 (2018) 19

Authors:

James Sadler, LO Silva, RA Fonseca, K Glize, Muhammad Kasim, Alex Savin, Ramy Aboushelbaya, Marko Mayr, Benjamin Spiers, Robin H-W Wang, R Bingham, RMGM Trines, Peter Norreys

Abstract:

The plasma Raman instability can efficiently compress a nanosecond long high power laser pulse to sub-picosecond duration. Although many authors envisaged a converging beam geometry for Raman amplification, here we propose the exact opposite geometry; the amplification should start at the intense focus of the seed. We generalise the coupled laser envelope equations to include this non-collimated case. The new geometry completely eradicates the usual trailing secondary peaks of the output pulse, which typically lower the efficiency by half. It also reduces, by orders of magnitude, the initial seed pulse energy required for efficient operation. As in the collimated case, the evolution is self-similar, although the temporal pulse envelope is different. A two-dimensional particle-in-cell simulation demonstrates efficient amplification of a diverging seed with only 0:3mJ energy. The pulse has no secondary peaks and almost constant intensity as it amplifies and diverges.

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

Physics of Plasmas AIP Publishing 25:5 (2018) 056705

Authors:

JJ Santos, M Bailly-Grandvaux, M Ehret, AV Arefiev, D Batani, FN Beg, A Calisti, S Ferri, R Florido, P Forestier-Colleoni, S Fujioka, MA Gigosos, L Giuffrida, L Gremillet, JJ Honrubia, S Kojima, P Korneev, KFF Law, J-R Marques, A Morace, C Mosse, O Peyrusse, Steven Rose, M Roth, S Sakata, F Suzuki-Vidal, VT Tikhonchuk, T Toncian, N Woolsey, Z Zhang

Abstract:

Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλ 2 las. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by protondeflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics.

Hydrodynamic optical-field-ionized plasma channels

Physical Review E American Physical Society 97:5 (2018) 053203

Authors:

Robert J Shalloo, C Arran, L Corner, J Holloway, J Jonnerby, R Walczak, HM Milchberg, Simon Hooker

Abstract:

We present experiments and numerical simulations which demonstrate that fully-ionized, lowdensity plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization (OFI). Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0) = 1 × 1017 cm−3 and lowest-order modes of spot size WM ≈ 40 µm. These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimetre of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 × 1017 cm−3 . ne(0) . 1 × 1018 cm−3 and 61 µm & WM & 33 µm. Low-density plasma channels of this type would appear to be well-suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.