Modelling K shell spectra from short pulse heated buried microdot targets
HIGH ENERGY DENSITY PHYSICS 23 (2017) 178-183
Non-thermal damage to lead tungstate induced by intense short-wavelength laser radiation (Conference Presentation)
Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics (2017) 102360g-102360g-1
Transition from collisional to collisionless regimes in interpenetrating plasma flows on the National Ignition Facility
Physical Review Letters American Physical Society 118:18 (2017) 185003
Abstract:
A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.Optimization of plasma amplifiers
Physical Review E American Physical Society (2017)
Abstract:
Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities.We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ, nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.Robustness of raman plasma amplifiers and their potential for attosecond pulse generation
High Energy Density Physics Elsevier 23 (2017) 212-216