The Lund jet plane

Journal of High Energy Physics Springer Verlag 2018:64 (2018)

Authors:

Frederic Dreyer, Gavin Salam, G Soyez

Abstract:

Lund diagrams, a theoretical representation of the phase space within jets, have long been used in discussing parton showers and resummations. We point out that they can be created for individual jets through repeated Cambridge/Aachen declustering, providing a powerful visual representation of the radiation within any given jet. Concentrating here on the primary Lund plane, we outline some of its analytical properties, highlight its scope for constraining Monte Carlo simulations and comment on its relation with existing observables such as the zg variable and the iterated soft-drop multiplicity. We then examine its use for boosted electroweak boson tagging at high momenta. It provides good performance when used as an input to machine learning. Much of this performance can be reproduced also within a transparent log-likelihood method, whose underlying assumption is that different regions of the primary Lund plane are largely decorrelated. This suggests a potential for unique insight and experimental validation of the features being used by machine-learning approaches.

A journey through small- x resummation

Chapter in From My Vast Repertoire ..., World Scientific Publishing (2018) 173-204

The strong coupling: a theoretical perspective

Chapter in From My Vast Repertoire ..., WORLD SCIENTIFIC (2018) 101-121

The strong coupling: a theoretical perspective

Chapter in From My Vast Repertoire ..., World Scientific Publishing (2018) 101-121

Theory Vision talk at LHCP2018

(2018)